Abelian Sheaves on Paracompact Spaces.

Terminology and notations. Given a sheaf of abelian groups *F* on a topological space *X*, write s(x) for a class of a section $s \in F(U)$ in the stalk F_x over a point $x \in U$. The *support* of a sheaf *F* (resp. of a section $s \in F(U)$) is the set $supp(F) = \{x \in X \mid F_x \neq 0\}$ (resp. $supp(s) = \{x \in U \mid s(x) \neq 0\}$). A sheaf *F* admits a partition of unity, if for every section $s \in F(U)$ over an open $U \subset X$ and every open covering $U = \bigcup W_\alpha$, there exist some sections $s_\alpha \in F(U)$ with $supp(s_\alpha) \subset W_\alpha$ such that for every $x \in U$, $s_\alpha(x) = 0$ for all but a finite set of α 's, and $\sum_\alpha s_\alpha(x) = s(x)$ in F_x . A sheaf *F* on *X* is called to be *flabby* (resp. *soft*), if the restriction map $F(X) \to F(U)$ (resp. $F(X) \to F_Z$) is surjective for all open $U \subset X$ (resp. for all closed $Z \subset X$). A sheaf *F* is called to be *fine* if for any two closed subsets $Z_1, Z_2 \subset X$ there is an endomorphism $F \to F$ acting identically over some open $U_1 \supset Z_1$ and equal to the zero map over some open $U_2 \supset Z_2$.

- **SHA5** \diamond **1.** Show that **a)** in an exact triple of sheaves $0 \rightarrow F \rightarrow G \rightarrow H \rightarrow 0$ with flabby *F*, the sequence of groups $0 \rightarrow F(U) \rightarrow G(U) \rightarrow H(U) \rightarrow 0$ is exact for all open $U \subset X$, and *G* is flabby only if *H* is flabby **b)** the push forward of a flabby sheaf is flabby **c)** every flabby sheaf is soft.
- **SHA5** \diamond **2.** For a sheaf *F*, writte *G_F* for its *flabby Godement envelope*, which has *G_F*(*U*) $\stackrel{\text{def}}{=} \prod_{x \in U} F_x$. Show that the assignment *F* \mapsto *G_F* gives an exact functor from sheaves to flabby sheaves.
- **SHA5** \diamond **3.** For a closed embedding $\iota: Z \hookrightarrow X$ and a sheaf F on Z show that **a**) the stalk ι_*F_X equals F_X for $x \in Z$, and vanishes for $x \notin Z$ **b**) the functor ι_* is exact, and $\iota^*\iota_* \simeq \text{Id } \mathbf{c}$) $H^n(X, \iota_*F) \simeq H^n(Z, F)$. **d**) every morphism of sheaves $\varphi: E \to G$ on X such that $\text{supp}(G) \subset Z$ is uniquely factorized through the canonical morphism $F \to \iota_*\iota^*F$.
- **SHA54.** For an open embedding $j : U \hookrightarrow X$ show that the functor j^* is exact and $j^*j_* \simeq \text{Id}$.
- **SHA5** \diamond **5.** Given some open $U_1, U_2 \subset X$ and a sheaf F on X, construct the exact sequence of groups $\dots \rightarrow H^p(U_1 \cup U_2, j_{1\cup 2}^*F) \rightarrow H^p(U_1, j_1^*F) \oplus H^p(U_2, j_2^*F) \rightarrow H^p(U_1 \cap U_2, j_{1\cap 2}^*F) \rightarrow H^{p+1}(U_1 \cup U_2, j_{1\cup 2}^*F) \rightarrow \dots$, where j_{\dots} 's mean the corresponding open embeddings.
- **SHA5** \diamond **6.** Let *X* be locally compact¹ and closed subsets $Z_1, Z_2 \subset X$ be compact/ For a sheaf *F* on *X* construct an exact sequence of groups ... $\rightarrow H^p(Z_1 \cap Z_2, \iota_{1\cap 2}^*F) \rightarrow H^p(Z_1, \iota_1^*F) \oplus H^p(Z_2, \iota_2^*F) \rightarrow H^p(Z_1 \cup Z_2, \iota_{1\cup 2}^*F) \rightarrow H^{p+1}(Z_1 \cap Z_2, \iota_{1\cap 2}^*F) \rightarrow \dots$, where ι_{\dots} 's mean the corresponding closed embeddings.
- **SHA5** \diamond 7. Let *X* be locally compact and paracompact². Show that **a**) a sheaf *F* on *X* is soft iff for every compact closed $Z \subset X$, open $U \supset Z$, and a section $s \in F(U)$, there exists a global section $t \in F(X)$ such that s(x) = t(x) in the stalks F_x over all points *x* from some open subset $W \subset X$ such that $Z \subset W \subset U$ **b**) a sheaf of modules over a soft sheaf of associative rings is soft **c**) a sheaf of continuous functions on *X* with values in \mathbb{R} or \mathbb{C} is soft **d**) every soft sheaf admits a partition of unity **e**) *F* is soft (resp. fine) iff every point has an open neighborhood $j : U \hookrightarrow X$ such that j^*F is soft (resp. fine) on *U* **f**) *F* is fine iff the sheaf of rings $\mathcal{H} om(F, F)$, which has³ $\mathcal{H} om(F, F)(U) \stackrel{\text{def}}{=} \operatorname{Hom}(j^*F, j^*F)$, where $j : U \hookrightarrow X$ is the open embedding, is flabby **g**) a sheaf of smooth functions on a smooth manifold *X* with values in \mathbb{R} or \mathbb{C} is soft of sheaves $0 \to F \to G \to H \to 0$ with soft *F*, *G* is soft only if *H* is soft, and the sequence of stalks $0 \to F_Z \to G_Z \to H_Z \to 0$ is exact for all closed $Z \subset X$.
- **SHA5** \diamond **8.** Let a sheaf *F* admit a partition of unity. Show that every open covering of *X* is *F*-acyclic, and deduce from this that *F* is acyclic.
- **SHA5** \diamond **9.** For a smooth real manifold *X* of dimension *n*, show that: **a)** the sheaf of differential *p*-forms Ω^p is acyclic for all *p* **b)** the complex of sheaves $0 \to \Omega^0 \xrightarrow{d} \Omega^1 \xrightarrow{d} \Omega^2 \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n \to 0$ is an acyclic resolution for the constant sheaf \mathbb{R}^{\sim} .

¹That is, Hausdorf, and every point of X has an open neighborhood with the compact closure.

²That is, every open covering of *X* contains a locally finite subcovering.

³By the way, check that it is a sheaf.

_.

No	date	verified by	signature
1a			
b			
c			
2			
3a			
b			
c			
d			
4			
5			
6			
7a			
b			
C			
d			
e			
f			
<u>g</u>			
h i			
			[]
8			
9a			
b			