Spectral Sequences.

SHA4 \diamond 1. An exact diagram of modules k_1 is denoted by $(D_1, E_1, i_1, j_1, k_1)$ and called an *exact*

couple. Put $d_1 = j_1 k_1$, $E_2 = \ker d_1 / \operatorname{im} d_1 \simeq k_1^{-1}(D_1) / j_1(\ker i_1)$, $D_2 = \operatorname{im} i_1$,

$$i_2 = i_1|_{i \le i_1}$$
, $j_2 : i_1(x) \mapsto j_1(x)$, $k_2 : x \pmod{i \le d_1} \mapsto k_1(x)$.

Show that **a)** $d_1^2 = 0$, j_2 and k_2 are well defined, and $(D_2, E_2, i_2, j_2, k_2)$ is an exact couple too (it is called the *derived couple* of $(D_1, E_1, i_1, j_1, k_1)$) b) In the (r - 1)th derived couple $(D_r, E_r, i_r, j_r, k_r)$, we have $D_r \simeq \operatorname{im} i_1^{r-1}$, $E_r \simeq k_1^{-1} (\operatorname{im} i_1^{r-1}) / j_1 (\operatorname{ker} i_1^r)$ and the exact triple

$$0 \to \operatorname{im} i_1^{r-1} / \operatorname{im} i_1^r \to E_r \to \ker i_1^r / \ker i_1^{r-1} \to 0$$

SHA4 \diamond **2.** Let modules $D_1 = \bigoplus_{p,q \in \mathbb{Z}} D_1^{p,q}$, $E_1 = \bigoplus_{p,q \in \mathbb{Z}} E_1^{p,q}$ be bigraded and equipped with the homogeneous morphisms of bidegrees deg $i_1 = (-1, 1)$, deg $j_1 = (0, 0)$, deg $k_1 = (1, 0)$. Write $(D_r, E_r, i_r, j_r, k_r)$ for the (r - 1)th derived couple of $(D_1, E_1, i_1, j_1, k_1)$ and put the modules $E_r^{p,q}$ in the cells of a rectangular table whose columns and rows are numbered by p and q respectively. Let $E_1^{p,q} = 0$ uniformly in p for $q \ll 0$ and uniformly in q for $p \ll 0$. For every cell (p,q), show that there exists $N = N(p,q) \in \mathbb{N}$ such that $\forall r > N$, $E_r^{p,q} = E_{r+1}^{p,q}$. Describe $E_{\infty}^{p,q}$ explicitly as a subfactor of D_1 in terms of kernels or images of the iterated maps $i_1 : D_1 \to D_1$ (see the diaram below).

Limit. Let $\forall p, q, \exists N = N(p, q)$ such that both incoming and outgoing differentials at the (p, q)-cell vanish in the table $E_r^{p,q}$ for all r > N. Then there are well defined modules $E_{\infty}^{p,q} \stackrel{\text{def}}{=} E_{N+1}^{p,q} = E_{N+2}^{p,q} = \dots$. If there exist some modules E_{∞}^{n} equipped with decreasing filtrations $F^p E_{\infty}^n$ such that $E_{\infty}^n = \bigcup_p F^p E_{\infty}^n$, $\bigcap_p F^p E_{\infty}^n = 0$ and $F^p E_{\infty}^n / F^{p+1} E_{\infty}^n = E_{\infty}^{p,n-p}$, then we say that $E_r^{p,q}$ are *converging* to E_{∞}^n and write $E_r^{p,q} \Rightarrow E_{\infty}^n$.

SHA4 \diamond **3.** Let every module K^m in a complex $\cdots \rightarrow K^m \rightarrow K^{m+1} \rightarrow \cdots$ be equipped with a finite decreasing filtration $K^m = F^0 K^m \supset F^1 K^m \supset F^2 K^m \supset \cdots \supset 0$ such that $d(F^p K^m) \subset F^p K^{m+1}$ for all p, m. Show that: a) for every p, there is a well defined quotient complex $G^{p}K$ whose degree m component is $F^{p}K^{m}/F^{p+1}K^{m}$ and the differential is induced the differential d in K b) the modules $D_1^{p,q} = H^{p+q}(F^pK)$ and $E_1^{p,q} =$ $= H^{p+q}(G^pK)$ form an exact couple whose *r*th derived couple has

$$E_{r+1}^{p,q} \simeq Z_r^{p,q} / \left(B_r^{p,q} \cap Z_r^{p,q} \right) \simeq \left(Z_r^{p,q} + B_r^{p,q} \right) / B_r^{p,q},$$

where $Z_r^{p,q} \stackrel{\text{def}}{=} \{ c \in F^p K^{p+q} \mid dc \in d (F^{p+r} K^{p+q}) \}$ and $B_r^{p,q} \stackrel{\text{def}}{=} d (F^{p-r} K^{p+q-1}) + F^{p+1} K^{p+q}$ c) $E_r^{p,q} \Rightarrow H^n(K)$.

SHA4 • **4.** For the total complex Tot(K) of a bicomplex $K = \bigoplus K^{p,q}$, consider two filtrations ${}^{I}F$ and ${}^{II}F$ with ${}^{I}F^{p} \operatorname{Tot}^{m}(K) = \bigoplus_{\nu \ge p, \ p+q=n} K^{p,q} \text{ and } {}^{I\!I}F^{q} \operatorname{Tot}^{m}(K) = \bigoplus_{\nu \ge q, \ p+q=n} K^{p,q}. \text{ Construct two spectral sequences } IE_{r}^{p,q} \Rightarrow H^{n}(\operatorname{Tot}(K)) \text{ with } {}^{I}E_{2}^{p,q} = H_{d_{1}}^{p}(H_{d_{2}}^{q}(K)) \text{ and } {}^{I\!I}E_{r}^{p,q} \Rightarrow H^{n}(\operatorname{Tot}(K)) \text{ with } {}^{I\!I}E_{2}^{p,q} = H_{d_{2}}^{q}(H_{d_{1}}^{p}(K)).$

N₂	date	verified by	signature
1a			
b			
2			
3a			
b			
c			
4			