Spectral Sequences.

SHA4 \diamond 1. An exact diagram of modules couple. Put $d_{1}=j_{1} k_{1}, E_{2}=\operatorname{ker} d_{1} / \operatorname{im} d_{1} \simeq k_{1}^{-1}\left(D_{1}\right) / j_{1}\left(\operatorname{ker} i_{1}\right), D_{2}=\operatorname{im} i_{1}$,

$$
i_{2}=\left.i_{1}\right|_{\mathrm{im} i_{1}}, \quad j_{2}: i_{1}(x) \mapsto j_{1}(x), \quad k_{2}: x\left(\operatorname{modim} d_{1}\right) \mapsto k_{1}(x)
$$

Show that a) $d_{1}^{2}=0, j_{2}$ and k_{2} are well defined, and ($\left.D_{2}, E_{2}, i_{2}, j_{2}, k_{2}\right)$ is an exact couple too (it is called the derived couple of $\left(D_{1}, E_{1}, i_{1}, j_{1}, k_{1}\right)$) b) In the $(r-1)$ th derived couple ($D_{r}, E_{r}, i_{r}, j_{r}, k_{r}$), we have $D_{r} \simeq \operatorname{im} i_{1}^{r-1}, E_{r} \simeq k_{1}^{-1}\left(\operatorname{im} i_{1}^{r-1}\right) / j_{1}\left(\operatorname{ker} i_{1}^{r}\right)$ and the exact triple

$$
0 \rightarrow \operatorname{im} i_{1}^{r-1} / \operatorname{im} i_{1}^{r} \rightarrow E_{r} \rightarrow \operatorname{ker} i_{1}^{r} / \operatorname{ker} i_{1}^{r-1} \rightarrow 0
$$

SHA4 \diamond 2. Let modules $D_{1}=\bigoplus_{p, q \in \mathbb{Z}} D_{1}^{p, q}, E_{1}=\bigoplus_{p, q \in \mathbb{Z}} E_{1}^{p, q}$ be bigraded and equipped with the homogeneous morphisms of bidegrees $\operatorname{deg} i_{1}=(-1,1), \operatorname{deg} j_{1}=(0,0), \operatorname{deg} k_{1}=(1,0)$. Write $\left(D_{r}, E_{r}, i_{r}, j_{r}, k_{r}\right)$ for the $(r-1)$ th derived couple of $\left(D_{1}, E_{1}, i_{1}, j_{1}, k_{1}\right)$ and put the modules $E_{r}^{p, q}$ in the cells of a rectangular table whose columns and rows are numbered by p and q respectively. Let $E_{1}^{p, q}=0$ uniformly in p for $q \ll 0$ and uniformly in q for $p \ll 0$. For every cell (p, q), show that there exists $N=N(p, q) \in \mathbb{N}$ such that $\forall r>N$, $E_{r}^{p, q}=E_{r+1}^{p, q}$. Describe $E_{\infty}^{p, q}$ explicitly as a subfactor of D_{1} in terms of kernels or images of the iterated maps $i_{1}: D_{1} \rightarrow D_{1}$ (see the diaram below).

Limit. Let $\forall p, q, \exists N=N(p, q)$ such that both incoming and outgoing differentials at the (p, q)-cell vanish in the table $E_{r}^{p, q}$ for all $r>N$. Then there are well defined modules $E_{\infty}^{p, q} \stackrel{\text { def }}{=} E_{N+1}^{p, q}=E_{N+2}^{p, q}=\ldots$. If there exist some modules E_{∞}^{n} equipped with decreasing filtrations $F^{p} E_{\infty}^{n}$ such that $E_{\infty}^{n}=\bigcup_{p} F^{p} E_{\infty}^{n}, \bigcap_{p} F^{p} E_{\infty}^{n}=0$ and $F^{p} E_{\infty}^{n} / F^{p+1} E_{\infty}^{n}=E_{\infty}^{p, n-p}$, then we say that $E_{r}^{p, q}$ are converging to E_{∞}^{n} and write $E_{r}^{p, q} \Rightarrow E_{\infty}^{n}$.

SHA4 \diamond 3. Let every module K^{m} in a complex $\cdots \rightarrow K^{m} \rightarrow K^{m+1} \rightarrow \cdots$ be equipped with a finite decreasing filtration $K^{m}=F^{0} K^{m} \supset F^{1} K^{m} \supset F^{2} K^{m} \supset \cdots \supset 0$ such that $d\left(F^{p} K^{m}\right) \subset F^{p} K^{m+1}$ for all p, m. Show that: a) for every p, there is a well defined quotient complex $G^{p} K$ whose degree m component is $F^{p} K^{m} / F^{p+1} K^{m}$ and the differential is induced the differential d in $K \quad \mathbf{b}$) the modules $D_{1}^{p, q}=H^{p+q}\left(F^{p} K\right)$ and $E_{1}^{p, q}=$ $=H^{p+q}\left(G^{p} K\right)$ form an exact couple whose r th derived couple has

$$
E_{r+1}^{p, q} \simeq Z_{r}^{p, q} /\left(B_{r}^{p, q} \cap Z_{r}^{p, q}\right) \simeq\left(Z_{r}^{p, q}+B_{r}^{p, q}\right) / B_{r}^{p, q}
$$

where $Z_{r}^{p, q} \stackrel{\text { def }}{=}\left\{c \in F^{p} K^{p+q} \mid d c \in d\left(F^{p+r} K^{p+q}\right)\right\}$ and $B_{r}^{p, q} \stackrel{\text { def }}{=} d\left(F^{p-r} K^{p+q-1}\right)+F^{p+1} K^{p+q}$ c) $E_{r}^{p, q} \Rightarrow H^{n}(K)$.

SHA4 $\diamond 4$. For the total complex $\operatorname{Tot}(K)$ of a bicomplex $K=\bigoplus K^{p, q}$, consider two filtrations ${ }^{I} F$ and ${ }^{\text {II }} F$ with ${ }^{I} F^{p} \operatorname{Tot}^{m}(K)=\bigoplus_{v \geqslant p, p+q=n} K^{p, q}$ and ${ }^{I I} F^{q} \operatorname{Tot}^{m}(K)=\bigoplus_{v \geqslant q, p+q=n} K^{p, q}$. Construct two spectral sequences ${ }^{I} E_{r}^{p, q} \Rightarrow H^{n}(\operatorname{Tot}(K))$ with ${ }^{I} E_{2}^{p, q}=H_{d_{1}}^{p}\left(H_{d_{2}}^{q}(K)\right)$ and ${ }^{I I} E_{r}^{p, q} \Rightarrow H^{n}(\operatorname{Tot}(K))$ with ${ }^{I} E_{2}^{p, q}=H_{d_{2}}^{q}\left(H_{d_{1}}^{p}(K)\right)$.
\qquad ـ.

№	date	verified by	signature
$\mathbf{1 a}$			
\mathbf{b}			
$\mathbf{2}$			
$\mathbf{3 a}$			
\mathbf{b}			
\mathbf{c}			
$\mathbf{4}$			

