Exact Categories¹

SHA 2¹/₂**<1.** Let a category \mathcal{E} have the zero object 0 and the kernel and cokernel of every morphism². Given a morphism $\varphi : X \to Y$ in \mathcal{E} , put im $\varphi \stackrel{\text{def}}{=} \ker (Y \to \operatorname{coker} \varphi)$ and $\operatorname{coim} \varphi \stackrel{\text{def}}{=} \operatorname{coker} (\ker \varphi \to X)$. Show that every φ admits the functorial in φ factorization $X \to \operatorname{coim} \varphi \to \operatorname{im} \varphi \to Y$.

Exact categories. A category \mathcal{E} is called to be *exact* if it satisfies the conditions of prb. SHA $2\frac{1}{2} \ge 1$ an the canonical arrow coim $\varphi \to \operatorname{im} \varphi$ is an isomorphism for every $\varphi \in \operatorname{Mor} \mathcal{E}$. A composition $\varphi \psi$ is called to be *exact* if ker $\varphi = \operatorname{im} \psi$. All the remaining problems deal with an *arbitrary* exact category.

SHA 21/2 \$2. Consider a commutative diagram with exact arrows

$$\begin{array}{c} X_1 \xrightarrow{\alpha_1} Y_1 \xrightarrow{\beta_1} Z_1 \\ \downarrow \xi & \downarrow \eta & \downarrow \zeta \\ X_2 \xrightarrow{\alpha_2} Y_2 \xrightarrow{\beta_2} Z_2 \end{array}$$

a) For ker $\alpha_1 = 0 = \ker \alpha_2$, construct an exact sequence $0 \to \ker \zeta \to \ker \eta \to \ker \zeta$. Now assume that coker $\xi = \operatorname{coker} \beta_1 = \operatorname{coker} \beta_2 = 0$. Show that b) coker $\eta \simeq \operatorname{coker} \zeta$ c) the sequence $X_2 \to \operatorname{im} \eta \to \operatorname{im} \zeta$ is exact d) im $\zeta = \operatorname{coker} (\ker \eta \to Z_1)$ e) coker (ker $\eta \to \ker \zeta$) = 0.

SHA 2¹/₂ **3.** Given a commutative diagram with exact arrows

$$\begin{array}{ccc} A_1 \longrightarrow B_1 \longrightarrow C_1 \longrightarrow D_1 \\ & & & & & & \\ \mu^{\alpha} & & & & & & \\ A_2 \longrightarrow B_2 \longrightarrow C_2 \longrightarrow D_2 \end{array}$$

show that if coker $\alpha = 0$ (resp. ker $\delta = 0$), then there exists an exact sequence ker $\beta \rightarrow \text{ker } \gamma \rightarrow \text{ker } \delta$ (resp. coker $\alpha \rightarrow \text{coker } \beta \rightarrow \text{coker } \gamma$).

SHA 2½**4.** For every composition $\varphi\psi$, construct a long exact sequence $0 \rightarrow \ker \psi \rightarrow \ker \varphi\psi \rightarrow \ker \varphi \rightarrow \operatorname{coker} \psi \rightarrow \operatorname{coker} \varphi\psi \rightarrow \operatorname{coker} \varphi \rightarrow 0$.

SHA 2¹/₂ **5.** For a commutative diagram with exact arrows

and coker $\alpha = 0 = \ker \varepsilon$, put $K \stackrel{\text{def}}{=} \ker (C_1 \to D_2)$, $\overline{K} \stackrel{\text{def}}{=} \operatorname{coker} (B_1 \to C_2)$. **a)** Construct an injection $K \to \ker \delta$ and a surjection coker $\beta \hookrightarrow \overline{K}$. **b)** Show that there exists a unique morphism ∂ : ker $\delta \to \operatorname{coker} \beta$ such that the compositions $K \to C_1 \to C_2 \to \overline{K}$ and $K \to \ker \delta \xrightarrow{\partial} \operatorname{coker} \beta \to \overline{K}$ coincide. **c)** Construct an exact sequence ker $\beta \to \ker \gamma \to \ker \delta \to \operatorname{coker} \beta \to \operatorname{coker} \delta$.

SHA 2¹/₂**◊6.** For a diagram (1) with invertible α , β , δ , ε , show that γ is invertible too.

SHA 2^{1/2} \diamond **7.** Given a complex³ C: ... $\xrightarrow{d^{i-1}} C^i \xrightarrow{d^i} C^{i+1} \xrightarrow{d^{i+1}} \cdots$, put $Z^i \stackrel{\text{def}}{=} \ker d^i$, $\overline{Z}^i \stackrel{\text{def}}{=} \operatorname{coker} d^{i-1}$, $H^i \stackrel{\text{def}}{=} Z^i / \operatorname{im} d^{i-1}$. Verify that d^n gives a morphism $\overline{Z}^n \to Z^{n+1}$. For an exact sequence of complexes $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ construct the functorial exact sequence $H^n(A) \xrightarrow{H^n(\alpha)} H^n(B) \xrightarrow{H^n(\beta)} H^n(C) \xrightarrow{H^n(\delta^n)} H^{n+1}(A) \xrightarrow{H^{n+1}(\alpha)} H^{n+1}(B) \xrightarrow{H^{n+1}(\beta)} H^{n+1}(B)$.

¹Hints for all the problems in this task see in *B. Iversen.* «Cohomology of sheaves».

²That is, the (co)equalizer of the morphism in question and the *zero morphism* (i.e., transmitted through the zero object).

³This means that $d^{i}d^{i-1} = 0$ for all *i*.

N₂	date	verified by	signature
1			
2a			
b			
С			
d			
e			
3			
4			
5a			
b			
c			
6			
7			