Exact Categories ${ }^{1}$

SHA $\mathbf{2}^{1 / 2} \otimes \mathbf{1}$. Let a category \mathcal{E} have the zero object 0 and the kernel and cokernel of every morphism ${ }^{2}$. Given a morphism $\varphi: X \rightarrow Y$ in \mathcal{E}, put $\operatorname{im} \varphi \stackrel{\text { def }}{=} \operatorname{ker}(Y \rightarrow \operatorname{coker} \varphi)$ and $\operatorname{coim} \varphi \stackrel{\text { def }}{=} \operatorname{coker}(\operatorname{ker} \varphi \rightarrow X)$. Show that every φ admits the functorial in φ factorization $X \rightarrow \operatorname{coim} \varphi \rightarrow \operatorname{im} \varphi \rightarrow Y$.
Exact categories. A category \mathcal{E} is called to be exact if it satisfies the conditions of prb. SHA $2^{1 / 2 \diamond 1}$ an the canonical arrow $\operatorname{coim} \varphi \rightarrow \operatorname{im} \varphi$ is an isomorphism for every $\varphi \in \operatorname{Mor} \varepsilon$. A composition $\varphi \psi$ is called to be exact if $\operatorname{ker} \varphi=\operatorname{im} \psi$. All the remaining problems deal with an arbitrary exact category.

SHA $\mathbf{2}^{1 ⁄ 2} \curvearrowright 2$. Consider a commutative diagram with exact arrows

a) For $\operatorname{ker} \alpha_{1}=0=\operatorname{ker} \alpha_{2}$, construct an exact sequence $0 \rightarrow \operatorname{ker} \xi \rightarrow \operatorname{ker} \eta \rightarrow \operatorname{ker} \zeta$. Now assume that $\operatorname{coker} \xi=\operatorname{coker} \beta_{1}=\operatorname{coker} \beta_{2}=0$. Show that b) $\operatorname{coker} \eta \simeq \operatorname{coker} \zeta \mathbf{c}$) the sequence $X_{2} \rightarrow \operatorname{im} \eta \rightarrow \operatorname{im} \zeta$ is exact d) $\operatorname{im} \zeta=\operatorname{coker}\left(\operatorname{ker} \eta \rightarrow Z_{1}\right)$ e) coker $(\operatorname{ker} \eta \rightarrow \operatorname{ker} \zeta)=0$.
SHA $21 / 2 \diamond 3$. Given a commutative diagram with exact arrows

show that if coker $\alpha=0$ (resp. ker $\delta=0$), then there exists an exact sequence $\operatorname{ker} \beta \rightarrow \operatorname{ker} \gamma \rightarrow \operatorname{ker} \delta$ (resp. coker $\alpha \rightarrow$ coker $\beta \rightarrow$ coker γ).
SHA $2^{1 ⁄ 2} \wedge 4$. For every composition $\varphi \psi$, construct a long exact sequence $0 \rightarrow \operatorname{ker} \psi \rightarrow \operatorname{ker} \varphi \psi \rightarrow \operatorname{ker} \varphi \rightarrow$ coker $\psi \rightarrow \operatorname{coker} \varphi \psi \rightarrow \operatorname{coker} \varphi \rightarrow 0$.

SHA $2 \underline{1} 2 \wedge 5$. For a commutative diagram with exact arrows

and coker $\alpha=0=\operatorname{ker} \varepsilon$, put $K \stackrel{\text { def }}{=} \operatorname{ker}\left(C_{1} \rightarrow D_{2}\right), \bar{K} \xlongequal{\text { def }}=\operatorname{coker}\left(B_{1} \rightarrow C_{2}\right)$. a) Construct an injection $K \rightarrow \operatorname{ker} \delta$ and a surjection coker $\beta \hookrightarrow \bar{K}$. b) Show that there exists a unique morphism $\partial: \operatorname{ker} \delta \rightarrow \operatorname{coker} \beta$ such that the compositions $K \rightarrow C_{1} \rightarrow C_{2} \rightarrow \bar{K}$ and $K \rightarrow \operatorname{ker} \delta \xrightarrow{\partial} \operatorname{coker} \beta \rightarrow \bar{K}$ coincide. c) Construct an exact sequence $\operatorname{ker} \beta \rightarrow \operatorname{ker} \gamma \rightarrow \operatorname{ker} \delta \rightarrow \operatorname{coker} \beta \rightarrow \operatorname{coker} \gamma \rightarrow \operatorname{coker} \delta$.
SHA $2^{1 ⁄ 2} \curvearrowright 6$. For a diagram (1) with invertible $\alpha, \beta, \delta, \varepsilon$, show that γ is invertible too.
 $Z^{i} / \operatorname{im} d^{i-1}$. Verify that d^{n} gives a morphism $\bar{Z}^{n} \rightarrow Z^{n+1}$. For an exact sequence of complexes $0 \rightarrow$ $A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ construct the functorial exact sequence $H^{n}(A) \xrightarrow{H^{n}(\alpha)} H^{n}(B) \xrightarrow{H^{n}(\beta)} H^{n}(C) \xrightarrow{H^{n}\left(\delta^{n}\right)}$ $H^{n+1}(A) \xrightarrow{H^{n+1}(\alpha)} H^{n+1}(B) \xrightarrow{H^{n+1}(\beta)} H^{n+1}(B)$.

[^0]Individual report card of \qquad Task № $2 \frac{1}{2}$ (optional) -.

№	date	verified by	signature
$\mathbf{1}$			
$\mathbf{2 a}$			
\mathbf{b}			
\mathbf{c}			
\mathbf{d}			
\mathbf{e}			
$\mathbf{3}$			
$\mathbf{4}$			
$\mathbf{5 a}$			
\mathbf{b}			
\mathbf{c}			
$\mathbf{6}$			
7			

[^0]: ${ }^{1}$ Hints for all the problems in this task see in B. Iversen. «Cohomology of sheaves».
 ${ }^{2}$ That is, the (co)equalizer of the morphism in question and the zero morphism (i.e., transmitted through the zero object).
 ${ }^{3}$ This means that $d^{i} d^{i-1}=0$ for all i.

