Categories and Functors

Notations. Let Set, Top, $\mathcal{A}b$, $\mathcal{G}rp$, $\mathcal{C}mr$, $\mathcal{M}od_K$, $\mathcal{V}ec_{\mathbb{k}} = \mathcal{M}od_{\mathbb{k}}$, $\mathcal{A}ss_{\mathbb{k}}$, $A\text{-}\mathcal{M}od$, $\mathcal{M}od\text{-}A$ denote, respectively, the categories of sets, topological spaces, abelian groups, all groups, commutative rings¹, modules over a commutative ring K, vector spaces and associative algebras over a field \mathbb{k} , left and right modules over a (noncommutative) associative \mathbb{k} -algebra A. The categories of functors $\mathcal{C} \to \mathcal{D}$ and presheaves $\mathcal{C}^{\text{opp}} \to \mathcal{D}$ are denoted by $\mathcal{F}un(\mathcal{C}, \mathcal{D})$ and $pSh(\mathcal{C}, \mathcal{D})$.

- **SHA1** \diamond **1.** Let Δ_{big} be the category of all finite ordered sets with order preserving maps as the morphisms and $\Delta \subset \Delta_{\mathrm{big}}$ be its full small subcategory formed by sets $[n] \stackrel{\mathrm{def}}{=} \{0, 1, \ldots, n\}$, $n \geqslant 0$, ordered usually. Show that **a**) Δ and Δ_{big} are equivalent **b**) algebra $\mathbb{Z}[\Delta]$ is generated by the identity arrows $e_n = \mathrm{Id}_{[n]}$, the inclusions $\partial_n^{(i)} \colon [n-1] \hookrightarrow [n]$, $0 \leqslant i \leqslant n$, $i \notin \partial_n^{(i)}([n-1])$, and surjections $s_n^{(i)} \colon [n] \twoheadrightarrow [n-1]$, $0 \leqslant i \leqslant n-1$, $(i+1) \mapsto i$. \mathbf{c}^*) Find generators for the ideal of relations between these generating arrows.
- **SHA1** \diamond **2.** For a given $X \in \text{Ob } \mathcal{C}$, define the functor $h^X \mapsto \text{Hom}(X,Y)$ and the presheaf $h_X : Y \mapsto \text{Hom}(Y,X)$ by sending an arrow $\varphi : Y_1 \to Y_2$ to the maps

```
\begin{split} \varphi_*: & \ \mathsf{Hom}(X,Y_1) \to \mathsf{Hom}(X,Y_2), \ \psi \mapsto \varphi \circ \psi, \\ \varphi^*: & \ \mathsf{Hom}(Y_2,X) \to \mathsf{Hom}(Y_1,X), \ \psi \mapsto \psi \circ \varphi, \end{split}
```

provided by the left and right multiplications by φ . Show that the assignments $X \mapsto h^X$ and $X \mapsto h_X$ define a pre-sheaf $h^* : \mathcal{C}^{\text{opp}} \to \mathcal{F}un(\mathcal{C}, \mathcal{S}et)$ and a functor $h_* : \mathcal{C} \to p\mathcal{S}h(\mathcal{C}, \mathcal{S}et)$ respectively.

- **SHA1\diamond3.** Show that functor $h^X: \mathcal{A}b \to \mathcal{A}b$ takes an exact sequence $0 \to A \to B \to C \to 0$ to the exact sequence $0 \to \operatorname{Hom}(X,A) \to \operatorname{Hom}(X,B) \to \operatorname{Hom}(X,C)$ whose rightmost arrow may be non-surjective. Formulate and prove dual property of functor $h_X: \mathcal{A}b \to \mathcal{A}b$.
- SHA1 \diamond 4. Describe products and coproducts in a) Set b) Top c) $\mathcal{M}od_K$ d) $\mathcal{G}rp$ e) $\mathcal{C}mr$.
- **SHA1\diamond5.** Fix prime $p \in \mathbb{N}$. For every $n \in \mathbb{N}$, let $A_n = \mathbb{Z}/(p^n)$. For m > n, write $\psi_{nm} : A_m \to A_n$ for the quotient map and $\varphi_{mn} : A_n \hookrightarrow A_m$ for the embedding $[1] \mapsto [p^{m-n}]$ respectively. In category $\mathcal{A}b$ describe **a)** $\lim A_n$ along the arrows ψ_{mn} **b)** $\operatorname{colim} A_n$ along the arrows φ_{mn} .
- **SHA1** \diamond **6.** Let $B_n = \mathbb{Z}/(n)$. For n|m, write $\psi_{nm} : B_m \to B_n$ and $\varphi_{mn} : B_n \hookrightarrow B_m$ for the quotient map and the embedding $[1] \mapsto [m/n]$ respectively. In category $\mathcal{A}b$ describe **a)** $\lim B_n$ along the arrows ψ_{nm} **b)** colim B_n along the arrows φ_{mn} .
- **SHA1\diamond7.** Prove that a functor $G: \mathcal{D} \to \mathcal{C}$ admits a left adjoint functor F iff for each $X \in \text{Ob } \mathcal{C}$, the functor $h_G^X: Y \mapsto \text{Hom}_{\mathcal{C}}(X, G(Y))$ is corepresentable, and in this case, F(X) corepresents h_G^X . Formulate and prove the dual criteria for the existence of the right adjoint functor G to a given functor $F: \mathcal{C} \to \mathcal{D}$.
- **SHA1 \circs 8.** Show that each left adjoint functor commutes with colimits and each right adjoint functor commutes with limits².
- **SHA1** \diamond **9.** For an arbitrary extension $S \subset R$ of associative algebras with units construct left and right adjoint functors to the restriction functor res $_S^R$: R- $\mathcal{M}od \to S$ - $\mathcal{M}od$.
- **SHA1** \diamond **10.** Given a topological space X, write $S(X): \Delta^{\mathrm{opp}} \to \mathcal{S}et$ for the simplicial set that takes $[n] \in \mathrm{Ob}\,\Delta$ to $S_n(X) \stackrel{\mathrm{def}}{=} \mathrm{Hom}_{\mathcal{T}op}(\Delta^n, X)$, where $\Delta^n \subset \mathbb{R}^{n+1}$ is the standard regular n-dimensional simplex, and takes an order preserving map $\varphi: [n] \to [m]$ to the map $f \mapsto f \circ |\varphi|$ provided by the right composition with the affine map $|\varphi|: \Delta^n \to \Delta^m$ acting on the vertices as φ . Show that the functor $S: \mathcal{T}op \to pSh(\Delta)$ is right adjoint to the geometric realization functor $pSh(\Delta) \to \mathcal{T}op$.

¹With the unit elements and the homomorphisms respecting the unit elements.

²A functor $F : \mathcal{C} \to \mathcal{D}$ is said to be *commuting with* (*co*) *limits*, if for every $L \in \text{Ob } \mathcal{C}$ and diagram $\Phi : \mathcal{N} \to \mathcal{C}$ the condition «L is the (co) limit of Φ in \mathcal{C} » implies the condition «F(L) is the (co) limit of $F \circ \Phi$ in D

No	date	verified by	signature
1a			
b			
С			
2			
3			
4a			
b			
С			
d			
е			
5a			
b			
6a			
b			
7			
8			
9			
10			