Примеры линейных представлений

- **ТП5\diamond1.** Найдите в Mat₆(\mathbb{R}) все ассоциативные \mathbb{R} -подалгебры с единицей размерности > 31.
- **ТП5\diamond2.** Приведите пример неразложимого **a)** приводимого представления аддитивной группы \mathbb{Z} **б)** представления конечной группы, имеющего ненулевые инварианты.
- **ТП5\diamond3.** Пусть конечная группа G действует на $V=\mathbb{C}^n$ перестановками базисных векторов. Как связано значение характера $\chi_V(g)$ с числом неподвижных точек перестановки g?
- **ТП5\diamond4.** Выразите через характеры χ_U и χ_W представлений U и W конечной группы G характер представления **a)** $U \oplus W$ **b)** $U \otimes W$ **b)** U^* **r)** Hom(U,W) π^*) $\chi_{\Lambda_U^n}$ **e*)** $\chi_{S_U^n}$.
- **ТП5 \$ 5.** Покажите, что **a)** $\chi_{S^2U}(g) = \left(\chi_U^2(g) + \chi_U(g^2)\right)/2$ **6)** $\chi_{\Lambda^2U}(g) = \left(\chi_U^2(g) \chi_U(g^2)\right)/2$.
- **ТП5** \diamond **6***. Пусть V двумерное неприводимое представление группы S_3 . а) Верно ли, что $S^{n+6}(V) = S^n(V) \oplus R$, где R регулярное представление? **6)** Разложите все $S^n(V)$ в сумму неприводимых представлений. в) Опишите подалгебру S_3 -инвариантов в алгебре SV. г) Вычислите характеры всех $V^{\otimes n}$ и разложите их на неприводимые. д) Покажите, что $S^2\left(S^3(V)\right) \simeq S^3\left(S^2(V)\right)$ е) Изоморфны ли $S^k\left(S^m(V)\right)$ и $S^m\left(S^k(V)\right)$ при всех k, m?
- **ТП5\diamond7.** Опишите все неприводимые представления группы диэдра D_n и их характеры.
- **ТП5\diamond8.** Вычислите характеры следующих представлений группы S_4 : тривиального, знакового, 2-мерного посредством эпиморфизма на группу треугольника и двух 3-мерных собственной группой куба и несобственной группой тетраэдра. Есть ли среди них приводимые? А изоморфные? Перечислите неприводимые представления S_4 и разложите их на неприводимые представления подгруппы $S_3 = \operatorname{Stab}(4) \subset S_4$.
- **ТП5\diamond9.** Перечислите неприводимые представления группы A_4 , вычислите их характеры и выясните, как неприводимые представления S_4 раскладываются на неприводимые при ограничении на A_4 .
- **ТП5•10.** Разложите в сумму неприводимых представление собственной группы куба в пространстве С-значных функций на множестве его **a)** вершин **б)** рёбер **в)** граней.
- **ТП5** \diamond **11.** На гранях куба написаны числа 1, 2, 3, 4, 5, 6 как на игральной кости. За один ход каждое из них заменяют на среднее арифметическое чисел с четырёх соседних граней. Вычислите с точностью до 10^{-3} , что будет написано на гранях после 2023 ходов. Зависит ли ответ от начальной расстановки чисел 1, 2, 3, 4, 5, 6?
- **ТП5•12.** Найдите размерности, характеры и разложения на приводимые представления для следующих представлений группы S_5 : **a)** тривиального U, знакового U', симплициального $V, V' = V \otimes U', \Lambda^2 V, S^2 V$ **6*)** представления посредством изоморфизма $S_5 \cong \operatorname{PGL}_2(\mathbb{F}_5)$ в пространстве W функций $\mathbb{P}_1(\mathbb{F}_5) \to \mathbb{C}$ с нулевой суммой значений, а также представлений $W' = W \otimes U', S^2 W, \Lambda^2 W, V \otimes W$.
- **ТП5** \diamond **13.** Опишите все неприводимые представления группы A_5 , вычислите их характеры и выясните, как раскладываются при ограничении на A_5 неприводимые представления S_5 .
- **ТП5•14.** Составьте таблицы неприводимых характеров группы: **a)** кватернионных единиц **б*)** $SL_2(\mathbb{F}_3)$ **в*)** верхних унитреугольных матриц $H(\mathbb{F}_3) \subset SL_3(\mathbb{F}_3)$ над полем \mathbb{F}_3 .

 $^{^1}$ Характером линейного представления $\varrho: M \to \operatorname{End}(V)$ множества операторов M в конечномерном векторном пространстве V над полем \Bbbk называется функция $\chi_V: M \to \Bbbk$, $g \mapsto \operatorname{tr} \varrho(g)$.

 $^{^2}$ Действие группы $\operatorname{PGL}_2(\mathbb{F}_5)$ на шести точках проективной прямой $\mathbb{P}_1(\mathbb{F}_5)$ задаёт вложение $\operatorname{PGL}_2(\mathbb{F}_5) \hookrightarrow S_6$. Изоморфизм $\operatorname{PGL}_2(\mathbb{F}_5) \simeq S_5$ задаётся действием $\operatorname{PGL}_2(\mathbb{F}_5)$ левыми умножениями на множестве левых смежных классов $S_6/\operatorname{PGL}_2(\mathbb{F}_5)$.

(напишите свои имя, отчество и фамилию)

No	дата	кто принял	подпись
1			
2a			
б			
3			
4a			
б			
В			
Г			
Д			
e			
5a			
б			
6a			
б			
В			
Г			
д е			
7			<u> </u>
8			<u> </u>
		T	
9			
10a			
б			
B		<u> </u>	
11			
12a			
б			
13			
14a			
б			
В			