Dimensions of Algebraic Manifolds

AG7 1. Prove that $\dim_{(x,y)}(X \times Y) = \dim_x X + \dim_y Y$ at every point $(x, y) \in X \times Y$.

- **AG7** ◆2. Let *X* ⊂ $\mathbb{P}_n = \mathbb{P}(V)$ be a projective variety of dimension *d*. Show that projective subspaces *H* ⊂ $\mathbb{P}(V)$ of dimension (n d) intersecting *X* in a finite number of points form a Zariski open subset in the grassmannian¹ Gr(n + 1 d, *V*).
 - HINT. Use the projection of the incidence graph $\Gamma = \{(x, H) \in X \times Gr(n + 1 d, V) \mid x \in H\}$ onto X to show that Γ is an irreducible projective variety and find dim Γ . Then analyze the second projection $\Gamma \to Gr(n + 1 d, V)$.
- **AG7** \diamond **3** (resultant). Given positive integers d_0, d_1, \dots, d_n , let $\mathbb{P}_{N_i} = \mathbb{P}(S^{d_i}V^*)$ for $0 \leq i \leq n$ and $V = \mathbb{k}^{n+1}$. Show that:
 - **a)** $\Gamma \stackrel{\text{def}}{=} \{(S_0, S_1, \dots, S_n, p) \in \mathbb{P}_{N_0} \times \dots \times \mathbb{P}_{N_n} \times \mathbb{P}_n \mid p \in S_0 \cap S_1 \cap \dots \cap S_n\}$ is an irreducible projective variety, and find dim Γ
 - **b)** up to a scalar factor, there exists a unique irreducible polynomial *R* in coefficients of homogeneous polynomials f_0, f_1, \ldots, f_n of degrees d_0, d_1, \ldots, d_n in n + 1 variables such that a given system of n + 1 equations $f_v = 0$ has a non-zero solution if and only if the polynomial *R* vanishes at the coefficients of these F_v 's.
- **AG7** ◇**4** (geometric definition of dimension). Show that the dimension of an irreducible variety $X \subset \mathbb{P}_n$ equals: **a**) the maximal $d \in \mathbb{Z}$ such that $X \cap L \neq \emptyset$ for every dimension (n - d) projective subspace $L \subset \mathbb{P}_n$ **b**) the minimal $d \in \mathbb{Z}$ for which there is an (n - d - 1)-dimensional projective subspace $L \subset \mathbb{P}_n$ such that $X \cap L = \emptyset$ **c**) the minimal $d \in \mathbb{Z}$ such that $X \cap L = \emptyset$ for a generic² dimension (n - d - 1) projective subspace $L \subset \mathbb{P}_n$.
- **AG7 ◊5.** Show that there exists a unique homogeneous polynomial *P* on the space of homogeneous forms of degree 4 in 4 variables such that *P* vanishes at *f* iff the surface $V(f) ⊂ \mathbb{P}_3$ contains a line.
 - HINT. Show that the incidence graph $\Gamma = \{(\ell, S) \in Gr(2, 4) \times \mathbb{P}(S^4(\mathbb{C}^4)^*) | \ell \subset S\}$ is a projective variety and use the projection $\Gamma \to Gr(2, 4)$ to show that Γ is irreducible and find dim Γ . Then find a finite nonempty fiber for the second projection $\Gamma \to \mathbb{P}(S^4(\mathbb{C}^4)^*)$.
- AG7 >6. Show that the image of a regular dominant morphism contains an open dense subset.
- **AG7** \diamond **7**. Show that lines lying on a smooth odd dimensional quadric $Q \subset \mathbb{P}_{2n}$ form an irreducible projective variety and find its dimension.
- **AG7** \diamond **8.** Let φ : $X \rightarrow Y$ be a regular morphism of algebraic manifolds. Show that isolated³ points of fibers $\varphi^{-1}(y)$ draw an open subset of *X* when *y* runs through *Y*.

HINT. Use Chevalley's theorem on semi-continuity from the Lecture Notes.

AG7 \diamond 9^{*} (Chevalley's constructivity theorem). Prove that an image of any regular morphism of algebraic varieties is *constructive*, i.e., can be constructed from a finite number of open and closed subsets by a finite number of unions, intersections, and taking complements.

¹This grassmannian parameterizes all subspaces of dimension (n - d) in $\mathbb{P}(V)$.

²That is, taken from some Zariski open dense subset of grassmannian Gr(n - d, V), which parametrizes all dimension (n - d - 1) projective subspaces in $\mathbb{P}(V)$.

³A point $p \in M$ is called *isolated* point of a subset $M \subset X$ in a topological space X, if it has an open neighborhood $U \ni p$ such that $U \cap M = \{p\}$.

_ •

No	date	verified by	signature
1			
2			
3a			
b			
4a			
b			
c			
5			
6			
7			
8			
9			