Dimensions of Algebraic Manifolds

AG7 \diamond 1. Prove that $\operatorname{dim}_{(x, y)}(X \times Y)=\operatorname{dim}_{x} X+\operatorname{dim}_{y} Y$ at every point $(x, y) \in X \times Y$.
AG7 \diamond 2. Let $X \subset \mathbb{P}_{n}=\mathbb{P}(V)$ be a projective variety of dimension d. Show that projective subspaces $H \subset$ $\mathbb{P}(V)$ of dimension $(n-d)$ intersecting X in a finite number of points form a Zariski open subset in the grassmannian ${ }^{1} \operatorname{Gr}(n+1-d, V)$.
Hint. Use the projection of the incidence graph $\Gamma=\{(x, H) \in X \times \operatorname{Gr}(n+1-d, V) \mid x \in H\}$ onto X to show that Γ is an irreducible projective variety and find $\operatorname{dim} \Gamma$. Then analyze the second projection $\Gamma \rightarrow \operatorname{Gr}(n+1-d, V)$.
AG7 $\diamond 3$ (resultant). Given positive integers $d_{0}, d_{1}, \ldots, d_{n}$, let $\mathbb{P}_{N_{i}}=\mathbb{P}\left(S^{d_{i}} V^{*}\right)$ for $0 \leqslant i \leqslant n$ and $V=\mathbb{k}^{n+1}$. Show that:
a) $\Gamma \stackrel{\text { def }}{=}\left\{\left(S_{0}, S_{1}, \ldots, S_{n}, p\right) \in \mathbb{P}_{N_{0}} \times \cdots \times \mathbb{P}_{N_{n}} \times \mathbb{P}_{n} \mid p \in S_{0} \cap S_{1} \cap \ldots \cap S_{n}\right\}$ is an irreducible projective variety, and find $\operatorname{dim} \Gamma$
b) up to a scalar factor, there exists a unique irreducible polynomial R in coefficients of homogeneous polynomials $f_{0}, f_{1}, \ldots, f_{n}$ of degrees $d_{0}, d_{1}, \ldots, d_{n}$ in $n+1$ variables such that a given system of $n+1$ equations $f_{v}=0$ has a non-zero solution if and only if the polynomial R vanishes at the coefficients of these F_{v} 's.

AG7 $\diamond 4$ (geometric definition of dimension). Show that the dimension of an irreducible variety $X \subset \mathbb{P}_{n}$ equals: a) the maximal $d \in \mathbb{Z}$ such that $X \cap L \neq \varnothing$ for every dimension $(n-d)$ projective subspace $L \subset \mathbb{P}_{n}$ b) the minimal $d \in \mathbb{Z}$ for which there is an $(n-d-1)$-dimensional projective subspace $L \subset \mathbb{P}_{n}$ such that $X \cap L=\varnothing$ c) the minimal $d \in \mathbb{Z}$ such that $X \cap L=\varnothing$ for a generic ${ }^{2}$ dimension $(n-d-1)$ projective subspace $L \subset \mathbb{P}_{n}$.

AG7 $\diamond 5$. Show that there exists a unique homogeneous polynomial P on the space of homogeneous forms of degree 4 in 4 variables such that P vanishes at f iff the surface $V(f) \subset \mathbb{P}_{3}$ contains a line.
Hint. Show that the incidence graph $\Gamma=\left\{(\ell, S) \in \operatorname{Gr}(2,4) \times \mathbb{P}\left(S^{4}\left(\mathbb{C}^{4}\right)^{*}\right) \mid \ell \subset S\right\}$ is a projective variety and use the projection $\Gamma \rightarrow \operatorname{Gr}(2,4)$ to show that Γ is irreducible and find $\operatorname{dim} \Gamma$. Then find a finite nonempty fiber for the second projection $\Gamma \rightarrow \mathbb{P}\left(S^{4}\left(\mathbb{C}^{4}\right)^{*}\right)$.
AG7 $\diamond 6$. Show that the image of a regular dominant morphism contains an open dense subset.
AG7 $\diamond 7$. Show that lines lying on a smooth odd dimensional quadric $Q \subset \mathbb{P}_{2 n}$ form an irreducible projective variety and find its dimension.
AG7 \diamond. Let $\varphi: X \rightarrow Y$ be a regular morphism of algebraic manifolds. Show that isolated ${ }^{3}$ points of fibers $\varphi^{-1}(y)$ draw an open subset of X when y runs through Y.
Hint. Use Chevalley's theorem on semi-continuity from the Lecture Notes.
AG7 $\diamond 9^{*}$ (Chevalley's constructivity theorem). Prove that an image of any regular morphism of algebraic varieties is constructive, i.e., can be constructed from a finite number of open and closed subsets by a finite number of unions, intersections, and taking complements.

[^0]\qquad Task 7 (November 23, 2017) (write your name and surname)

№	date	verified by	signature
$\mathbf{1}$			
$\mathbf{2}$			
$\mathbf{3 a}$			
\mathbf{b}			
$\mathbf{4 a}$			
\mathbf{b}			
\mathbf{c}			
$\mathbf{5}$			
6			
7			
$\mathbf{8}$			
$\mathbf{9}$			

[^0]: ${ }^{1}$ This grassmannian parameterizes all subspaces of dimension $(n-d)$ in $\mathbb{P}(V)$.
 ${ }^{2}$ That is, taken from some Zariski open dense subset of grassmannian $\operatorname{Gr}(n-d, V)$, which parametrizes all dimension $(n-d-1)$ projective subspaces in $\mathbb{P}(V)$.
 ${ }^{3}$ A point $p \in M$ is called isolated point of a subset $M \subset X$ in a topological space X, if it has an open neighborhood $U \ni p$ such that $U \cap M=\{p\}$.

