Rational functions and maps

AG6 \diamond **1 (rational functions).** Write $\Bbbk(X)$ for the algebra of rational functions on an affine algebraic variety X, that is, the algebra of fractions p/q, where $p, q \in \Bbbk[X]$ and q is not a zero divisor. For $f \in \Bbbk(X)$, the subset

$$Dom(f) \stackrel{\text{def}}{=} \{ x \in X \mid \exists p, q \in \mathbb{k}[X] : q(x) \neq 0 \& f = p/q \} \subset X$$

is called the *domain* of *f* . Show that:

- a) for $x \in \text{Dom}(f)$, the value $f(x) = p(x)/q(x) \in \mathbb{R}$ does not depend on a choice of fractional representation f = p/q with $p, q \in \mathbb{R}[X]$ and $q(x) \neq 0$
- **b)** Dom(f) is open and dense in X
- **c)** the map $f: \text{Dom}(f) \to \mathbb{k}$, $x \mapsto f(x)$, is continuous in Zariski topology.

AG6 \diamond **2.** Find Dom(f) for the following rational functions:

a)
$$f = (1 - y)/x$$
 on $V(x^2 + y^2 - 1) \subset \mathbb{A}^2$

b)
$$f = y/x$$
 on $V(x^3 + x^2 - y^2) \subset \mathbb{A}^2$

c)
$$f = x_1/x_3$$
 on $X = V(x_1x_4 - x_2x_3) \subset \mathbb{A}^4$.

AG6 \diamond **3.** Let $X = X_1 \cup X_2 \cup \ldots \cup X_m$ be the irreducible decomposition of an affine algebraic variety X. Write $f|_{X_i}$ for the image of a rational function f on X under the homomorphism $\mathbb{k}(X) \to \mathbb{k}(X_i)$ that extends the pullback homomorphism $\varphi_i^* : \mathbb{k}[X] \twoheadrightarrow \mathbb{k}[X_i]$ of the closed immersion $\varphi_i : X_i \hookrightarrow X$. Prove that the map

$$\Bbbk(X) \cong \Bbbk(X_1) \times \Bbbk(X_2) \times \cdots \times \Bbbk(X_m), \ f \mapsto \left(f|_{X_1}, f|_{X_2}, \, \ldots, \, f|_{X_m}\right)\,,$$

is an isomorphism of k-algebras.

AG64. Prove that $\mathcal{O}_{\mathbb{A}^n}(\mathbb{A}^n \setminus 0) = \mathbb{k}[\mathbb{A}^n]$ for $n \ge 2$.

AG6 \diamond **5***. Do there exist an affine algebraic variety $X \subset \mathbb{A}^n$ and an open subset $U \subset X$ such that the algebra $\mathcal{O}_X(U)$ is not finitely generated?

AG6 \diamond **6 (Cremona's quadratic involution).** Show that the assignment $(t_0:t_1:t_2)\mapsto (t_0^{-1}:t_1^{-1}:t_2^{-1})$ can be extended to a rational map $\varkappa:\mathbb{P}_2\to\mathbb{P}_2$ defined everywhere except three points. Find these points and describe the action of \varkappa on the three lines joining these points. Describe the image of \varkappa .

AG6 \diamond **7 (the graph of a rational map).** Let $\psi: X \dashrightarrow Y$ be a rational map defined on some open dense subset $U \subset X$. The Zariski closure of the set $\{(x, \psi(x)) \in X \times Y \mid x \in U\}$ is called the *graph* of ψ and denoted by

$$\Gamma_{\psi} \subset X \times Y$$
.

- a) Show that the graph of canonical projection $\mathbb{A}(V) \to \mathbb{P}(V)$ sending a nonzero vector $v \in V$ to the dimension-1 subspace $\mathbb{k} \cdot v \subset V$ coincides with the blowup of $\mathbb{A}(V)$ at the origin.
- **b)** Describe the graph $\Gamma_{\kappa} \subset \mathbb{P}_2 \times \mathbb{P}_2$ of the Cremona quadratic involution from prb. AG6 \diamond 6 and the fibers of two projections of this graph to \mathbb{P}_2 's.

AG6 \diamond **8.** Prove that the variety obtained from \mathbb{P}_2 by blowing up two different points on \mathbb{P}_2 is isomorphic to the blowup of $\mathbb{P}_1 \times \mathbb{P}_1$ at one point.

Individual report card of		Task 6 (November 17, 2017)
-	(write your name and surname)	

No	date	verified by	signature
1a			
b			
С			
2a			
b			
c			
3			
4			
5			
6			
7a			
b			
8			