Rational functions and maps

AG6 $\diamond 1$ (rational functions). Write $\mathbb{k}(X)$ for the algebra of rational functions on an affine algebraic variety X, that is, the algebra of fractions p / q, where $p, q \in \mathbb{k}[X]$ and q is not a zero divisor. For $f \in \mathbb{k}(X)$, the subset

$$
\operatorname{Dom}(f) \stackrel{\text { def }}{=}\{x \in X \mid \exists p, q \in \mathbb{k}[X]: q(x) \neq 0 \& f=p / q\} \subset X
$$

is called the domain of f. Show that:
a) for $x \in \operatorname{Dom}(f)$, the value $f(x)=p(x) / q(x) \in \mathbb{k}$ does not depend on a choice of fractional representation $f=p / q$ with $p, q \in \mathbb{k}[X]$ and $q(x) \neq 0$
b) $\operatorname{Dom}(f)$ is open and dense in X
c) the map $f: \operatorname{Dom}(f) \rightarrow \mathbb{k}, x \mapsto f(x)$, is continuous in Zariski topology.

AG6 \diamond 2. Find $\operatorname{Dom}(f)$ for the following rational functions:
a) $f=(1-y) / x$ on $V\left(x^{2}+y^{2}-1\right) \subset \mathbb{A}^{2}$
b) $f=y / x$ on $V\left(x^{3}+x^{2}-y^{2}\right) \subset \mathbb{A}^{2}$
c) $f=x_{1} / x_{3}$ on $X=V\left(x_{1} x_{4}-x_{2} x_{3}\right) \subset \mathbb{A}^{4}$.

AG6 \diamond. Let $X=X_{1} \cup X_{2} \cup \ldots \cup X_{m}$ be the irreducible decomposition of an affine algebraic variety X. Write $\left.f\right|_{X_{i}}$ for the image of a rational function f on X under the homomorphism $\mathbb{k}(X) \rightarrow \mathbb{k}\left(X_{i}\right)$ that extends the pullback homomorphism $\varphi_{i}^{*}: \mathbb{k}[X] \rightarrow \mathbb{k}\left[X_{i}\right]$ of the closed immersion $\varphi_{i}: X_{i} \hookrightarrow X$. Prove that the map

$$
\mathbb{k}(X) \xrightarrow{\sim} \mathbb{k}\left(X_{1}\right) \times \mathbb{k}\left(X_{2}\right) \times \cdots \times \mathbb{k}\left(X_{m}\right), f \mapsto\left(\left.f\right|_{X_{1}},\left.f\right|_{X_{2}}, \ldots,\left.f\right|_{X_{m}}\right),
$$

is an isomorphism of \mathbb{k}-algebras.
AG6 $\diamond 4$. Prove that $\mathcal{O}_{\mathbb{A}^{n}}\left(\mathbb{A}^{n} \backslash 0\right)=\mathbb{k}\left[\mathbb{A}^{n}\right]$ for $n \geqslant 2$.
AG6 $\diamond 5^{*}$. Do there exist an affine algebraic variety $X \subset \mathbb{A}^{n}$ and an open subset $U \subset X$ such that the algebra $\mathcal{O}_{X}(U)$ is not finitely generated?
AG6『6 (Cremona's quadratic involution). Show that the assignment $\left(t_{0}: t_{1}: t_{2}\right) \mapsto\left(t_{0}^{-1}: t_{1}^{-1}: t_{2}^{-1}\right)$ can be extended to a rational map $\kappa: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ defined everywhere except three points. Find these points and describe the action of \varkappa on the three lines joining these points. Describe the image of $\mathcal{\varkappa}$.
AG6 $\diamond 7$ (the graph of a rational map). Let $\psi: X \rightarrow Y$ be a rational map defined on some open dense subset $U \subset X$. The Zariski closure of the set $\{(x, \psi(x)) \in X \times Y \mid x \in U\}$ is called the graph of ψ and denoted by

$$
\Gamma_{\psi} \subset X \times Y
$$

a) Show that the graph of canonical projection $\mathbb{A}(V) \rightarrow \mathbb{P}(V)$ sending a nonzero vector $v \in V$ to the dimension- 1 subspace $\mathbb{k} \cdot v \subset V$ coincides with the blowup of $\mathbb{A}(V)$ at the origin.
b) Describe the graph $\Gamma_{\mathcal{H}} \subset \mathbb{P}_{2} \times \mathbb{P}_{2}$ of the Cremona quadratic involution from prb. AG6»6 and the fibers of two projections of this graph to \mathbb{P}_{2} 's.

AG6 \diamond 8. Prove that the variety obtained from \mathbb{P}_{2} by blowing up two different points on \mathbb{P}_{2} is isomorphic to the blowup of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ at one point.
\qquad . Task 6 (November 17, 2017) (write your name and surname)

№	date	verified by	signature
$\mathbf{1 a}$			
\mathbf{b}			
\mathbf{c}			
$\mathbf{2 a}$			
\mathbf{b}			
\mathbf{c}			
$\mathbf{3}$			
4			
$\mathbf{5}$			
$\mathbf{6}$			
$7 \mathbf{7 a}$			
\mathbf{b}			
8			

