Examples of curves

- **AG4•1** (rational normal curves). Consider the vector space U with basis t_0 , t_1 and use the coefficients a_i of expansion $f(t_0, t_1) = \sum_{n=0}^{d} a_n \cdot {\binom{d}{n}} t_1^{n} t_1^{d-n}$ as homogeneous coordinates in $\mathbb{P}_d = \mathbb{P}(S^d U)$. Show that the images of maps $v, \varphi, \psi : \mathbb{P}_1 \hookrightarrow \mathbb{P}_d$ listed below are transformed one to another by appropriate linear automorphisms of \mathbb{P}_d : **a**) $v : f \mapsto f^d$ for all $f \in \mathbb{P}_1$ (the *Veronese map* of degree d)
 - **b)** $\varphi : a \mapsto (f_0(a) : f_1(a) : \dots : f_d(a))$, where f_0, f_1, \dots, f_m are linearly independent homogeneous polynomials of degree d in $a = (a_0, a_1)$
 - c) ψ : $a \mapsto (\det^{-1}(p_0, a) : \det^{-1}(p_1, a) : \cdots : \det^{-1}(p_d, a))$, where $p_0, p_1, \ldots, p_d \in \mathbb{P}_1$ are some fixed mutually different points, and $\det(a, b) \stackrel{\text{def}}{=} a_0 b_1 a_1 b_0$ for $a = (a_0 : a_1), b = (b_0 : b_1)$.
- **AG4** \diamond **2.** In the notations of prb. AG3 \diamond 1, show that every linear automorphism of \mathbb{P}_d sending the Veronese curve $\nu(\mathbb{P}_1)$ to itself is induced by a linear change of variables t_0 , t_1 , i.e., by a linear automorphism of \mathbb{P}_1 .
- **AG4**◇**3.** Given *d*+3 points $p_1, p_2, ..., p_d$, *a*, *b*, *c* ∈ \mathbb{P}_d such that any (*d*+1) of them do not lie in a hyperplane, write $\ell_i \simeq \mathbb{P}_1$ for the pencil of hyperplanes passing through all p_v s but p_i , and $\psi_{ij} : \ell_j \simeq \ell_i$ for the homography sending the triple of hyperplanes in ℓ_j passing through *a*, *b*, *c* to the similar triple in ℓ_i . Show that $\bigcup_{H \in \ell_1} H \cap \psi_{21}(H) \cap \ldots \cap \psi_{n1}(H)$ is a rational normal curve from prb. AG3◇1, and this is the unique rational normal curve passing through the given *d* + 3 points.
- **AG4**•4 (rational curves). A curve $C = V(f) \subset \mathbb{P}_2$ is called *rational* if there are three homogeneous polynomials $p_0, p_1, p_2 \in \mathbb{K}[t_0, t_1]$ of the same degree such that the map $\mathbb{P}_1 \to \mathbb{P}_2$, $\alpha \mapsto (p_0(\alpha) : p_1(\alpha) : p_2(\alpha))$, establishes a bijection between \mathbb{P}_1 and *C*. Show that deg $f = \deg p_i$ in this case, and prove that every rational curve of degree *d* in \mathbb{P}_2 is a plane projection of the Veronese curve $C_d \subset \mathbb{P}_d$.
- AG4 \diamond 5. Describe intersection multiplicities at the origin in \mathbb{A}^2 between the curve $x^2y + xy^2 = x^4 + y^4$ and every line passing trough the origin. Find all singular points on the projective closure of this curve over an algebraically closed field.
- AG4.6. Find all singular points and compute the intersection multiplicities with all lines passing through these points¹ for the projective plane curve given by a) homogeneous equation $(x_0 + x_1 + x_2)^3 = 27 x_0 x_1 x_2$ b) affine equation $(x^2 - y + 1)^2 = y^2(x^2 + 1)$.
- AG4 \diamond 7 (plane cubics). A *plane cubic* is a curve of degree 3 in \mathbb{P}_2 over algebraically closed field.
 - a) How many singular points may a plane cubic have, and what can be their multiplicities?
 - **b)** Up to a linear projective automorphism of \mathbb{P}_2 , classify all reducible plane cubics split into a union of lines or a line and a conic.
 - c) Up to a linear projective automorphism of \mathbb{P}_2 , classify all rational plane cubics.
 - d) Show that every singular plane cubic is rational, but every smooth is not.
 - HINT. Use the projection from the singular point onto a line.
 - e) How many tangent lines to a smooth plane cubic can be drawn from a generic point of \mathbb{P}_2 ?
 - **f)** How many inflection points² are there on a smooth plane cubic?
 - g) For a smooth plane cubic *C* and an inflection point $a \in C$, show that there are exactly 3 non-inflection tangent lines to *C* drawn from *a*, and they touch *C* in a triple of collinear points.

HINT. Show that the quadratic polar of a is a split conic smooth at a.

- **h**^{*}) Deduce from the previous result that every smooth plane cubic is described in appropriate affine coordinates by the equation $y^2 = x(x 1)(x \lambda)$ for some $\lambda \in \mathbb{k}$.
- i^{*}) Show that two smooth plane cubics can be transformed one to another by a linear projective automorphism of \mathbb{P}_2 iff their *j*-invariants $j(\lambda) = 2^8(\lambda^2 \lambda + 1)^3/(\lambda(\lambda 1))^2$, where λ is as above, coincide.
- HINT. Show that $k(j) \subset k(\lambda)$ is the field of invariants for the action of the symmetric group S_3 on $k(\lambda)$ by linear fractional transformations of λ permuting the values $\lambda = \infty$, 0, 1.
- **AG48**. Find all lines laying on the projective cubic surface given by **a**) the affine equation xyz = 1**b**^{*}) (Fermat's cubic) the homogeneous equation $x_0^3 + x_1^3 + x_2^3 + x_3^3 = 0$.

¹Separately for every singular point.

²A point *p* of a curve $C \subset \mathbb{P}_2$ is called an *inflection point* if the tangent line T_pC intersects *C* at *p* with the multiplicity at least 3.

N₂	date	verified by	signature
1a			
b			
С			
2			
3			
4			
5			
6a			
b			
7a			
b			
c			
d			
e			
f			
g			
h			
i			
8a			
b			