## Examples of curves

AG4 $\triangleright 1$ (rational normal curves). Consider the vector space $U$ with basis $t_{0}, t_{1}$ and use the coefficients $a_{i}$ of expansion $f\left(t_{0}, t_{1}\right)=\sum_{n=0}^{d} a_{n} \cdot\left({ }_{n}^{d}\right) t_{0}^{n} t_{1}^{d-n}$ as homogeneous coordinates in $\mathbb{P}_{d}=\mathbb{P}\left(S^{d} U\right)$. Show that the images of maps $v, \varphi, \psi: \mathbb{P}_{1} \hookrightarrow \mathbb{P}_{d}$ listed below are transformed one to another by appropriate linear automorphisms of $\mathbb{P}_{d}:$ a) $v: f \mapsto f^{d}$ for all $f \in \mathbb{P}_{1}$ (the Veronese map of degree $d$ )
b) $\varphi: a \mapsto\left(f_{0}(a): f_{1}(a): \ldots: f_{d}(a)\right)$, where $f_{0}, f_{1}, \ldots, f_{m}$ are linearly independent homogeneous polynomials of degree $d$ in $a=\left(a_{0}, a_{1}\right)$
c) $\psi: a \mapsto\left(\operatorname{det}^{-1}\left(p_{0}, a\right): \operatorname{det}^{-1}\left(p_{1}, a\right): \cdots: \operatorname{det}^{-1}\left(p_{d}, a\right)\right)$, where $p_{0}, p_{1}, \ldots, p_{d} \in \mathbb{P}_{1}$ are some fixed mutually different points, and $\operatorname{det}(a, b) \stackrel{\text { def }}{=} a_{0} b_{1}-a_{1} b_{0}$ for $a=\left(a_{0}: a_{1}\right), b=\left(b_{0}: b_{1}\right)$.
AG4 $\triangleleft$. In the notations of prb. AG3 $\stackrel{1}{ }$, show that every linear automorphism of $\mathbb{P}_{d}$ sending the Veronese curve $v\left(\mathbb{P}_{1}\right)$ to itself is induced by a linear change of variables $t_{0}, t_{1}$, i.e., by a linear automorphism of $\mathbb{P}_{1}$.
AG4॰3. Given $d+3$ points $p_{1}, p_{2}, \ldots, p_{d}, a, b, c \in \mathbb{P}_{d}$ such that any $(d+1)$ of them do not lie in a hyperplane, write $\ell_{i} \simeq \mathbb{P}_{1}$ for the pencil of hyperplanes passing through all $p_{v}$ s but $p_{i}$, and $\psi_{i j}: \ell_{j} \simeq \ell_{i}$ for the homography sending the triple of hyperplanes in $\ell_{j}$ passing through $a, b, c$ to the similar triple in $\ell_{i}$. Show that $\bigcup_{H \in \ell_{1}} H \cap \psi_{21}(H) \cap \ldots \cap \psi_{n 1}(H)$ is a rational normal curve from prb. AG3॰1, and this is the unique rational normal curve passing through the given $d+3$ points.
AG4 $\downarrow$ (rational curves). A curve $C=V(f) \subset \mathbb{P}_{2}$ is called rational if there are three homogeneous polynomials $p_{0}, p_{1}, p_{2} \in \mathbb{k}\left[t_{0}, t_{1}\right]$ of the same degree such that the map $\mathbb{P}_{1} \rightarrow \mathbb{P}_{2}, \alpha \mapsto\left(p_{0}(\alpha): p_{1}(\alpha): p_{2}(\alpha)\right)$, establishes a bijection between $\mathbb{P}_{1}$ and $C$. Show that $\operatorname{deg} f=\operatorname{deg} p_{i}$ in this case, and prove that every rational curve of degree $d$ in $\mathbb{P}_{2}$ is a plane projection of the Veronese curve $C_{d} \subset \mathbb{P}_{d}$.
AG4 8 . Describe intersection multiplicities at the origin in $\mathbb{A}^{2}$ between the curve $x^{2} y+x y^{2}=x^{4}+y^{4}$ and every line passing trough the origin. Find all singular points on the projective closure of this curve over an algebraically closed field.
AG4ஃ6. Find all singular points and compute the intersection multiplicities with all lines passing through these points ${ }^{1}$ for the projective plane curve given by a) homogeneous equation $\left(x_{0}+x_{1}+x_{2}\right)^{3}=27 x_{0} x_{1} x_{2}$ b) affine equation $\left(x^{2}-y+1\right)^{2}=y^{2}\left(x^{2}+1\right)$.

AG4 7 (plane cubics). A plane cubic is a curve of degree 3 in $\mathbb{P}_{2}$ over algebraically closed field.
a) How many singular points may a plane cubic have, and what can be their multiplicities?
b) Up to a linear projective automorphism of $\mathbb{P}_{2}$, classify all reducible plane cubics split into a union of lines or a line and a conic.
c) Up to a linear projective automorphism of $\mathbb{P}_{2}$, classify all rational plane cubics.
d) Show that every singular plane cubic is rational, but every smooth is not.

Hint. Use the projection from the singular point onto a line.
e) How many tangent lines to a smooth plane cubic can be drawn from a generic point of $\mathbb{P}_{2}$ ?
f) How many inflection points ${ }^{2}$ are there on a smooth plane cubic?
g) For a smooth plane cubic $C$ and an inflection point $a \in C$, show that there are exactly 3 non-inflection tangent lines to $C$ drawn from $a$, and they touch $C$ in a triple of collinear points.
Hint. Show that the quadratic polar of $a$ is a split conic smooth at $a$.
$\mathbf{h}^{*}$ ) Deduce from the previous result that every smooth plane cubic is described in appropriate affine coordinates by the equation $y^{2}=x(x-1)(x-\lambda)$ for some $\lambda \in \mathbb{k}$.
$\mathbf{i}^{*}$ ) Show that two smooth plane cubics can be transformed one to another by a linear projective automorphism of $\mathbb{P}_{2}$ iff their $j$-invariants $j(\lambda)=2^{8}\left(\lambda^{2}-\lambda+1\right)^{3} /(\lambda(\lambda-1))^{2}$, where $\lambda$ is as above, coincide.
Hint. Show that $\mathbb{k}(j) \subset \mathbb{k}(\lambda)$ is the field of invariants for the action of the symmetric group $S_{3}$ on $\mathbb{k}(\lambda)$ by linear fractional transformations of $\lambda$ permuting the values $\lambda=\infty, 0,1$.
AG4 $\diamond$. Find all lines laying on the projective cubic surface given by a) the affine equation $x y z=1$
$\mathbf{b}^{*}$ ) (Fermat's cubic) the homogeneous equation $x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=0$.

[^0]$\qquad$ (write your name and surname)

| № | date | verified by | signature |
| ---: | :--- | :--- | :--- |
| $\mathbf{1 a}$ |  |  |  |
| $\mathbf{b}$ |  |  |  |
| $\mathbf{c}$ |  |  |  |
| 2 |  |  |  |
| 3 |  |  |  |
| 4 |  |  |  |
| $\mathbf{y}$ |  |  |  |
| $\mathbf{6 a}$ |  |  |  |
| b |  |  |  |
| $7 \mathbf{7 a}$ |  |  |  |
| b |  |  |  |
| c |  |  |  |
| d |  |  |  |
| e |  |  |  |
| f |  |  |  |
| g |  |  |  |
| h |  |  |  |
| i |  |  |  |
| $\mathbf{8 a}$ |  |  |  |
| b |  |  |  |


[^0]:    ${ }^{1}$ Separately for every singular point.
    ${ }^{2}$ A point $p$ of a curve $C \subset \mathbb{P}_{2}$ is called an inflection point if the tangent line $T_{p} C$ intersects $C$ at $p$ with the multiplicity at least 3 .

