Tensors and Plücker - Segre - Veronese interaction

AG3 $\diamond 1$. Are the following decompositions valid for any vector space V over a field of zero characteristic:
a) $V^{\otimes 2} \simeq \mathrm{Sym}^{2} V \oplus \mathrm{Alt}^{2} V$
b) $V^{\otimes 3} \simeq \operatorname{Sym}^{3} V \oplus \operatorname{Alt}^{3} V$?

If yes, prove it. If no, give an explicit example of a tensor that can not be decomposed in this way.
AG3 $\diamond 2$ (spinor decomposition). Let $V=\operatorname{End}(U)$, where $\operatorname{dim} U=2$, char $\mathbb{k} \neq 2$. Show that

$$
V^{\otimes 2} \simeq \underbrace{\left(\left(S^{2} U^{*} \otimes S^{2} U\right) \oplus\left(\Lambda^{2} U^{*} \otimes \Lambda^{2} U\right)\right)}_{\simeq \text { Sym }^{2} V} \bigoplus \underbrace{\left(\left(S^{2} U^{*} \otimes \Lambda^{2} U\right) \oplus\left(\Lambda^{2} U^{*} \otimes S^{2} U\right)\right)}_{\simeq \operatorname{Alt}^{2} V} .
$$

Hint. Use the decompositions $V=U^{*} \otimes U$ and $U^{\otimes 2} \simeq S^{2} U \oplus \Lambda^{2} U$.
AG3॰3. For finite dimensional vector spaces U, V construct the canonical linear isomorphisms

$$
\operatorname{Hom}(U \otimes \operatorname{Hom}(U, W), W) \simeq \operatorname{End}(\operatorname{Hom}(U, W)) \simeq \operatorname{Hom}\left(U, W \otimes \operatorname{Hom}(U, W)^{*}\right) .
$$

Write $c: U \otimes \operatorname{Hom}(U, W) \rightarrow W$ for the linear map $u \otimes f \mapsto f(u)$ and $\tilde{c}: U \rightarrow \operatorname{Hom}(U, W)^{*} \otimes W$ for the linear map corresponding to c under the above isomorphism. May \tilde{c} be non-injective? Describe the linear endomorphism of $\operatorname{Hom}(U, W)$ corresponding to c and \tilde{c}.
Hint. Use the isomorphism $\operatorname{Hom}(A, B) \simeq A^{*} \otimes B$, and that the decomposable tensors linearly span $A^{*} \otimes B$.
AG3 $\diamond 4$. Let $G=V(g) \subset \mathbb{P}_{3}=\mathbb{P}(V)$ be a smooth quadric. Write \widetilde{g} for the polarization of quadratic form g and $\Lambda^{2} \widetilde{g}$ for the bilinear form on $\Lambda^{2} V$ defined by prescription

$$
\Lambda^{2} \widetilde{g}\left(v_{1} \wedge v_{2}, w_{1} \wedge w_{2}\right) \stackrel{\text { def }}{=} \operatorname{det}\left(\begin{array}{ll}
\widetilde{g}\left(v_{1}, w_{1}\right) & \widetilde{g}\left(v_{1}, w_{2}\right) \\
\widetilde{g}\left(v_{2}, w_{1}\right) & \widetilde{g}\left(v_{2}, w_{2}\right)
\end{array}\right) .
$$

a) Verify that $\Lambda^{2} \widetilde{g}$ is symmetric and non degenerate. Write its Gram matrix in the basis $e_{i} \wedge e_{j}$ build from an orthonormal basis $e_{1}, e_{2}, e_{3}, e_{4}$ for g in V.
b) Prove that the quadric $V\left(\Lambda^{2} g\right) \subset \mathbb{P}_{5}=\mathbb{P}\left(\Lambda^{2} V\right)$ intersects the Plücker quadric $\operatorname{Gr}(2, V) \subset \mathbb{P}_{5}$ along the set of all tangent lines to $G \subset \mathbb{P}_{3}$.
AG3 $\triangleleft 5$. Consider the previous prb. AG3 $\downarrow 4$ for the space $V=\operatorname{End}(U)$ from prb. AG3 2 and $g=$ det, that is, for the Segre quadric $G=V(\operatorname{det}) \subset \mathbb{P}(V)$. Show that two families of ruling lines on G are mapped by the Plücker embedding $\operatorname{Gr}(2, V) \hookrightarrow \mathbb{P}\left(\Lambda^{2} V\right)$ to the pair of smooth plane conics cut out the Plücker quadric by the complementary planes $\Lambda=\mathbb{P}\left(\Lambda^{2} U^{*} \otimes S^{2} U\right)$, $\Lambda^{\times}=\mathbb{P}\left(S^{2} U^{*} \otimes \Lambda^{2} U\right)$ embedded into $\mathbb{P}\left(\Lambda^{2} \operatorname{End}(U)\right)$ via prb. AG3 $\diamond 2$. Verify that the both conics are embedded into these planes by the Veronese maps, i.e., the following diagram ${ }^{1}$ is commutative:

AG3 6. Write $S \subset \mathbb{P}_{3}$ for the surface ruled by the tangent lines to the Veronese cubic. Write an explicit equation for S, find its degree and all the singular points on S.

[^0]\qquad . Task 3 (October 5, 2017)

№	date	verified by	signature
$\mathbf{1 a}$			
\mathbf{b}			
2			
3			
$\mathbf{4 a}$			
\mathbf{b}			
5			
6			

[^0]: ${ }^{1}$ The Plücker embedding is dashed, because it sends lines to points.

