Projective quadrics

AG2 $\diamond \mathbf{1}$. Write the polarization $\tilde{q}(A, B)$ of quadratic form $q(A)=\operatorname{det} A$ on the space $\operatorname{Mat}_{2}(\mathbb{k})$ of 2×2-matrices as $\tilde{q}(A, B)=\frac{1}{2} \operatorname{tr}\left(A B^{\vee}\right)$. Describe explicitly how to get B^{\vee} from B.
AG2 $\diamond 2$ (Euclidean polarities). Consider a circle on the real Euclidean plane \mathbb{R}^{2}. By means of the ruler and compasses, construct
a) the polar line of a given point laying inside the circle
b) the pole of a given line non-intersecting the circle.

AG2॰3. Show that all conics passing through the points $a=(1: 0: 0), b=(0: 1: 0), c=(0: 0: 1)$, $d=(1: 1: 1)$ in \mathbb{P}_{2} form a pencil. Write an explicit equation for the conics of this pencil ${ }^{1}$.
AG2 \diamond. Over an algebraically closed field, let a pencil of conics on \mathbb{P}_{2} contain a smooth conic. Can this pencil contain exactly a) 0 b) 1 c) 2 d) 3 e) 4 different degenerated conics? Does there exist a pencil of conics on \mathbb{P}_{2} without any smooth conics at all?
AG2 \diamond. Over an algebraically closed field, are there two smooth conics in \mathbb{P}_{2} intersecting in exactly a) 1 b) 2 c) 3 different points?

AG2 8 . Show that the polar lines of a given point $a \in \mathbb{P}_{2}$ w.r.t. all the smooth conics in a given pencil are intersecting in one common point.
AG2 $\triangle 7$. Over the field \mathbb{F}_{9} of nine elements ${ }^{2}$, find the cardinality of
a) the conic $x_{0}^{2}+x_{1}^{2}+x_{2}^{2}=0$ in \mathbb{P}_{2}
b) the quadric $x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$ in \mathbb{P}_{3}.

AG2 \diamond. Given 4 mutually non-intersecting lines in a) $\mathbb{P}\left(\mathbb{C}^{4}\right)$ b) $\left.\left.\mathbb{P}\left(\mathbb{R}^{4}\right) c^{*}\right) \mathbb{C}^{3} d^{*}\right) \mathbb{R}^{3}$, find how many lines do intersect them all. List all possible answers and indicate those which are stable under small perturbations of the given lines.
AG2 \diamond. Consider the space $\mathbb{P}_{5}=\mathbb{P}\left(S^{2} V^{*}\right)$ of conics in $\mathbb{P}_{2}=\mathbb{P}(V)$. Write $S \subset \mathbb{P}_{5}=\mathbb{P}\left(S^{2} V^{*}\right)$ for the locus of singular conics. Show that
a) S is a cubic algebraic hypersurface
b) the set $\operatorname{Sing}(S)$ of singular points on S coincides with the image of quadratic Veronese embedding

$$
v_{2}: \mathbb{P}\left(V^{*}\right) \hookrightarrow \mathbb{P}_{5}, \quad \varphi \mapsto \varphi^{2},
$$

that is, a point $q \in S$ is singular iff the corresponding conic $Q=V(q) \subset \mathbb{P}_{2}$ is a double line
c) for a smooth point $q \in S$, which corresponds to a split conic $V(q)=\ell_{1} \cup \ell_{2} \subset \mathbb{P}_{2}$, the tangent space $T_{q} S$ in \mathbb{P}_{5} consists of all conics passing through the singular point $\ell_{1} \cap \ell_{2}$ of $V(q)$ in \mathbb{P}_{2}.

[^0]\qquad . Task 2 (September 14, 2017)

№	date	verified by	signature
1			
2			
3			
4			
5 a			
b			
c			
6			
$7 a$			
b			
$8 \mathbf{8 a}$			
b			
c			
d			
$9 a$			
b			
c			

[^0]: ${ }^{1}$ This should be a quadratic form whose coefficients depend linearly on two homogeneous parameters.
 ${ }^{2}$ Recall that $\mathbb{F}_{9}=\mathbb{Z}[x] /\left(3, x^{2}+1\right)$ consists of elements $a+b \sqrt{-1}$, where $a, b \in \mathbb{F}_{3}=\mathbb{Z} /(3)$ and $\sqrt{-1} \cdot \sqrt{-1}=-1 \in \mathbb{F}_{3}$.

