§9 Dimension

Everywhere in $\S 8$ we assume on default that the ground field \mathbb{k} is algebraically closed.
9.1 Basic properties of the dimension. Given an algebraic manifold X and a point $x \in X$, the maximal $n \in \mathbb{N}$ such that there exists an increasing chain of closed irreducible submanifolds

$$
\begin{equation*}
\{x\}=X_{0} \varsubsetneqq X_{1} \varsubsetneqq \cdots \nsubseteq X_{n-1} \varsubsetneqq X_{n} \subset X \tag{9-1}
\end{equation*}
$$

is called the dimension of X at x and denoted by $\operatorname{dim}_{x} X$. For an irreducible X, the maximality of a chain (9-1) forces $X_{n}=X$. Thus, if the point x belongs to several irreducible components of X, then $\operatorname{dim}_{x} X$ equals the maximal dimension among the dimensions of those components.

EXERCISE 9.1. Check that $\operatorname{dim}_{x} X=\operatorname{dim}_{x} U$ for every affine chart $U \ni x$.

LEMMA 9.1

Given a finite morphism of irreducible algebraic varieties $\varphi: X \rightarrow Y$, then $\operatorname{dim}_{x} X \leqslant \operatorname{dim}_{\varphi(x)} Y$ for all $x \in X$. If φ is not surjective, then the inequality is strict.

Proof. Replacing Y by an affine neighborhood of $\varphi(x)$ and X by the preimage of this neighborhood allows us to assume, by Exercise 9.1, that both X, Y are affine. It follows from Proposition 7.12 on p. 94 that every chain (9-1) in X is mapped to the strictly increasing chain of closed irreducible subvarieties $\varphi\left(X_{i}\right)$ in Y. This leads to the required inequality. If $\varphi(X) \neq Y$, then the last subvariety of the chain is proper in Y, and therefore the chain can be enlarged at least by Y.

PROPOSITION 9.1
$\operatorname{dim}_{x} \mathbb{A}^{n}=n$ for all $x \in \mathbb{A}^{n}$.
Proof. Since for every $x \in \mathbb{A}^{n}$ there is a chain (9-1) of strictly increasing affine subspaces $X_{i}=\mathbb{A}^{i}$ passing through x, the inequality $\operatorname{dim}_{x} \mathbb{A}^{n} \geqslant n$ holds. The opposite inequality is established by induction in n. It is obvious for \mathbb{A}^{0}. Let $\operatorname{dim}_{x} \mathbb{A}^{n}=m$. Then the last element in every maximal chain (9-1) for $X=\mathbb{A}^{n}$ is $X_{m}=\mathbb{A}^{n}$. The next to last element $X_{m-1} \subsetneq X_{m}$ is a proper subvariety in \mathbb{A}^{n}. By Corollary 8.4 on p. 105, it admits a finite map to some proper affine subspace $\mathbb{A}^{k} \subsetneq \mathbb{A}^{n}$. By Lemma 9.1 and the inductive assumption applied for $k, \operatorname{dim} X_{m-1} \leqslant \operatorname{dim} \mathbb{A}^{k} \leqslant k<n$. Hence, $m-1 \leqslant n-1$ as required.

Proposition 9.2

Let X be an irreducible algebraic manifold. Then $\operatorname{dim}_{x} X$ does not depend on $x \in X$. If X is affine, then $\operatorname{dim} X=\operatorname{tr} \operatorname{deg} \mathbb{k}_{\mathbb{k}}[X]$.

Proof. Replacing X by an affine neighborhood of $x \in X$ allows us to assume that X is affine. By the Corollary 8.4 on p. 105, there exists a finite regular surjection $\pi: X \rightarrow \mathbb{A}^{n}$. Its pullback

$$
\pi^{*}: \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \hookrightarrow \mathbb{k}[X]
$$

realizes $\mathbb{k}[X]$ as an algebraic extension of $\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Therefore, $\operatorname{tr} \operatorname{deg} \mathbb{k}[X]=n$. By the Proposition 9.1 and Lemma 9.1, $\operatorname{dim}_{x} X \leqslant \operatorname{dim} \mathbb{A}^{n}=n$ for all $x \in X$. It remains to prove the opposite inequality. Consider a maximal chain of increasing irreducible subvarieties in \mathbb{A}^{n}

$$
\{\pi(x)\}=Y_{0} \nsubseteq Y_{1} \nsubseteq \cdots \nsubseteq Y_{n-1} \nsubseteq Y_{n}=\mathbb{A}^{n} .
$$

By Proposition 7.13, every irreducible component of $\pi^{-1}\left(Y_{i}\right)$ is surjectively mapped onto Y_{i} for all i. Hence, there exists a strictly increasing chain $\{x\}=X_{0} \nsubseteq X_{1} \nsubseteq \cdots \nsubseteq X_{n-1} \nsubseteq X_{n}=X$ in which every X_{i} is an irreducible component of $\pi^{-1}\left(Y_{i}\right)$ that contains X_{i-1} and is surjectively mapped onto Y_{i}. This forces $\operatorname{dim}_{x} X \geqslant n$.

Corollary 9.1
For every irreducible affine variety X and finite regular surjection $X \rightarrow \mathbb{A}^{n}$, the equality $n=\operatorname{dim} X$ holds.

COROLLARY 9.2

The inequality $\operatorname{dim} X \leqslant \operatorname{dim} Y$ for a regular finite map $\varphi: X \rightarrow Y$ of irreducible manifolds ${ }^{1}$ becomes the equality if and only if φ is surjective.

Proof. For nonsurjectife φ the inequality is strong by Lemma 9.1. For surjective φ, the algebra $\mathbb{k}[X]$ is an algebraic extension of $\mathbb{k}[Y]$, and therefore $\operatorname{tr} \operatorname{deg} \mathbb{k}[X]=\operatorname{tr} \operatorname{deg} \mathbb{k}_{k}[Y]$.

COROLLARY 9.3
$\operatorname{dim}(X \times Y)=\operatorname{dim} X+\operatorname{dim} Y$ for irreducible varieties X, Y.
Proof. We can assume that X, Y both are affine, and $\operatorname{dim} X=n, \operatorname{dim} Y=m$. Then there exist finite surjections $\pi_{X}: X \rightarrow \mathbb{A}^{n}, \pi_{Y}: Y \rightarrow \mathbb{A}^{m}$. Their direct product $\pi_{X} \times \pi_{Y}: X \times Y \rightarrow \mathbb{A}^{n+m}$ is obviously regular and surjective. It is finite, because if some finite collections of elements f_{i} and g_{j} span, respectively, $\mathbb{k}[X]$ as a $\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$-module and $\mathbb{k}[Y]$ as a $\mathbb{k}\left[y_{1}, y_{2}, \ldots, y_{m}\right]$-module, then the products $f_{i} \otimes g_{j}$ span $\mathbb{k}[X] \otimes \mathbb{k}[Y]$ as a module over $\mathbb{k}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$.

EXERCISE 9.2. Verify the latter statement.
9.2 Dimensions of subvarieties. If an algebraic manifold X is reducible and a regular nonzero function $f: X \rightarrow \mathbb{k}$ vanishes identically along an irreducible component $X^{\prime} \subset X$ such that $\operatorname{dim} X^{\prime}=$ $=\operatorname{dim} X$, then for every point $x \in X^{\prime}$, the hypersurface $V(f) \subset X$ has $\operatorname{dim}_{x} V(f)=\operatorname{dim}_{x} X$, though $V(f) \neq X$ globally. For an irreducible X, such phenomenon never happens.

PROPOSITION 9.3

Let X be an irreducible affine algebraic variety and $f \in \mathbb{k}[X]$. Then $\operatorname{dim}_{p} V(f)=\operatorname{dim}_{p}(X)-1$ for all $p \in V(f)$.

Proof. If $V(f)=\varnothing$, there is nothing to prove. Assume that $V(f) \neq \varnothing$ and therefore, $f \neq$ const. Then, for $X=\mathbb{A}^{n}$, the statement follows from the Example 8.7 on p. 106 and the Corollary 9.1. The general case is reduced to $X=\mathbb{A}^{n}$ by the same geometric construction as in the proof of Proposition 7.13 on p. 95. Namely, fix a finite surjection $\pi: X \rightarrow \mathbb{A}^{m}$ and consider the map

$$
\varphi=\pi \times f: X \rightarrow \mathbb{A}^{m} \times \mathbb{A}^{1}, \quad x \mapsto(\pi(x), f(x))
$$

As we have seen in the proof of Proposition 7.13, the map φ provides X with the finite surjection onto the hypersurface $V\left(\mu_{f}\right) \subset \mathbb{A}^{m} \times \mathbb{A}^{1}$, the zero set of the minimal polynomial

$$
\mu_{f}(u, t)=t^{n}+\alpha_{1}(u) t^{n-1}+\cdots+\alpha_{n}(u) \in \mathbb{k}\left[u_{1}, u_{2}, \ldots, u_{m}\right][t]
$$

[^0]for f over $\mathbb{k}\left(\mathbb{A}^{m}\right)$. The hypersurface $V(f) \subset X$ is surjectively mapped by φ onto the intersection $V\left(\mu_{f}\right) \cap V(t)$. Within the affine space $\mathbb{A}^{m}=V(t)$ the intersection $V\left(\mu_{f}\right) \cap V(t)$ is given by the equation $a_{n}=0$, and therefore $\operatorname{dim} V\left(\mu_{f}\right) \cap V(t)=\operatorname{dim} V\left(a_{n}\right)=m-1$ at every point of this intersection. By the Corollary 9.2, $\operatorname{dim} V(f)=V\left(\mu_{f}\right) \cap V(t)=\operatorname{dim} X-1$.

COROLLARY 9.4

Let X be an affine algebraic variety and $f_{1}, f_{2}, \ldots, f_{m} \in \mathbb{k}[X]$. Then

$$
\begin{equation*}
\operatorname{dim}_{p} V\left(f_{1}, f_{2}, \ldots, f_{m}\right) \geqslant \operatorname{dim}_{p}(X)-m \tag{9-2}
\end{equation*}
$$

for all $p \in V\left(f_{1}, f_{2}, \ldots, f_{m}\right)$. If the class of f_{i} in the quotient $\mathbb{k}[X] /\left(f_{1}, f_{2}, \ldots, f_{i-1}\right)$ does not divide zero for every ${ }^{1} i=1,2, \ldots, m$, then the inequality (9-2) becomes an equality.

Proof. Induction in m. Let $Y=V\left(f_{1}, f_{2}, \ldots, f_{i-1}\right), p \in Y$, and Z be an irreducible component of Y passing through p. The function f_{i} ether vanishes identically on Z or is restricted to nonzero element of $\mathbb{k}[Z]$. The first means that f_{i} divides zero in $\mathbb{k}[Y]=\mathbb{k}[X] /\left(f_{1}, f_{2}, \ldots, f_{i-1}\right)$, and forces $\operatorname{dim}_{p}\left(Z \cap V\left(f_{1}, f_{2}, \ldots, f_{i}\right)\right)=\operatorname{dim}_{p} Z$. In the second case, $\operatorname{dim}_{p}\left(Z \cap V\left(f_{1}, f_{2}, \ldots, f_{i}\right)\right)=\operatorname{dim}_{p} Z-1$ by Proposition 9.3.

CAUTION 9.1. Note that Proposition 9.3 and Corollary 9.4 do not assert that $V\left(f_{1}, f_{2}, \ldots, f_{m}\right) \neq \varnothing$. Since the empty set contains no points p, for $V\left(f_{1}, f_{2}, \ldots, f_{m}\right)=\varnothing$, the Corollary 9.4 remains formally true but becomes empty. The weak Nullstellensatz implies that $V\left(f_{1}, f_{2}, \ldots, f_{m}\right)=\varnothing$ if and only if the class of f_{i} in $\mathbb{k}[X] /\left(f_{1}, f_{2}, \ldots, f_{i-1}\right)$ is invertible for some i, and this may routinely happen. For example, consider $X=\mathbb{A}^{3}=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}[x, y, z], f_{1}=x, f_{2}=x+1$. Obviously, $V(x, x+1)=\varnothing$. The same warning applies to the next corollary as well.

COROLLARY 9.5
For affine algebraic varieties $X_{1}, X_{2} \subset \mathbb{A}^{n}$ and every point $x \in X_{1} \cap X_{2}$,

$$
\operatorname{dim}_{x}\left(X_{1} \cap X_{2}\right) \geqslant \operatorname{dim}_{x} X_{1}+\operatorname{dim}_{x} X_{2}-n
$$

Proof. Let $\varphi_{i}: X_{i} \hookrightarrow \mathbb{A}^{n}, i=1,2$, be the closed immersions corresponding to the quotient maps $\varphi_{i}^{*}: \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[X_{i}\right]$. Then $X_{1} \cap X_{2}$ is isomorphic to the preimage of the diagonal $\Delta_{\mathbb{A}^{n}} \subset \mathbb{A}^{n} \times \mathbb{A}^{n}$ under the map $\varphi_{1} \times \varphi_{2}: X_{1} \times X_{2} \hookrightarrow \mathbb{A}^{n} \times \mathbb{A}^{n}$. Within $X_{1} \times X_{2}$, this preimage is determined by the n equations $\varphi_{1}^{*} \times \varphi_{2}^{*}\left(x_{i}\right)=\varphi_{1}^{*} \times \varphi_{2}^{*}\left(y_{i}\right)$, the pullbacks of equations $x_{i}=y_{i}$ for $\Delta_{\mathbb{A}^{n}}$ in $\mathbb{A}^{n} \times \mathbb{A}^{n}$. It remains to apply Corollary 9.4.

Proposition 9.4

For any irreducible projective varieties $X_{1}, X_{2} \subset \mathbb{P}_{n}$, the inequality $\operatorname{dim} X_{1}+\operatorname{dim} X_{2} \geqslant n$ forces $X_{1} \cap X_{2} \neq \varnothing$.

Proof. Let $\mathbb{P}_{n}=\mathbb{P}(V)$ and $\mathbb{A}^{n+1}=\mathbb{A}(V)$. Given a nonempty irreducible projective variety $Z \subset \mathbb{P}_{n}$, write $Z^{\prime} \subset \mathbb{A}^{n+1}$ for the affine cone over Z provided by the same homogeneous equations on the coordinates. Then the origin $O \in \mathbb{A}^{n+1}$ belongs to Z^{\prime} and $\operatorname{dim}_{O} Z^{\prime} \geqslant \operatorname{dim} Z+1$, because every chain

[^1]$\{z\} \subsetneq Z_{1} \subsetneq \cdots \subsetneq Z_{m}=Z$ produces the chain of cones $\{O\} \subsetneq(O, z) \subsetneq Z_{1}^{\prime} \subsetneq \cdots \subsetneq Z_{m}^{\prime}=Z^{\prime}$ starting with the point O and the line (O, z). Therefore, by Corollary 9.5
$$
\operatorname{dim}_{O}\left(X_{1}^{\prime} \cap X_{2}^{\prime \prime}\right) \geqslant \operatorname{dim}_{O}\left(X_{1}\right)+1+\operatorname{dim}_{O}\left(X_{2}\right)+1-n-1 \geqslant 1 .
$$

Thus, $X_{1}^{\prime} \cap X_{2}^{\prime \prime}$ is not exhausted by O.
9.2.1 Dimensions of fibers of regular maps. In a contrast to differential geometry and topology, the dimensions of nonempty fibers of regular maps are controlled in algebraic geometry almost as strictly as in linear algebra.

THEOREM 9.1

Let $\varphi: X \rightarrow Y$ be a dominant regular map of irreducible algebraic varieties. Then for all $x \in X$,

$$
\begin{equation*}
\operatorname{dim}_{x} \varphi^{-1}(\varphi(x)) \geqslant \operatorname{dim} X-\operatorname{dim} Y \tag{9-3}
\end{equation*}
$$

Moreover, there exists a dense Zariski open set $U \subset Y$ such that for all $y \in U$ and all $x \in \varphi^{-1}(y)$,

$$
\begin{equation*}
\operatorname{dim}_{x} \varphi^{-1}(y)=\operatorname{dim}_{x} X-\operatorname{dim}_{y} Y \tag{9-4}
\end{equation*}
$$

Proof. Replacing Y by an affine chart $U \ni \varphi(x)$ and X by an affine neighborhood of x in $\varphi^{-1}(U)$ allows us to assume that X, Y are affine. Composing φ with a finite surjection $Y \rightarrow \mathbb{A}^{m}$, we may assume that $Y=\mathbb{A}^{m}=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}\left[y_{1}, y_{2}, \ldots, y_{m}\right]$ and $\varphi(x)=0$. Then $\varphi^{-1}(0) \subset X$ is given by the m equations $\varphi^{*}\left(y_{i}\right)=0$, the pullbacks of the equations $y_{i}=0$, which describe the origin within \mathbb{A}^{m}. Thus, Corollary 9.4 implies inequality (9-3).

To prove the second statement, let us factorize φ into a closed immersion $X \hookrightarrow Y \times \mathbb{A}^{m}$ followed by the projection $\pi: Y \times \mathbb{A}^{m} \rightarrow Y$, as in formula (7-7) on p. 94, and apply Corollary 8.3 on p. 105 to the fibers of π. Consider the projective closure $\bar{X} \subset Y \times \mathbb{P}_{m}$, fix a projective hyperplane $H \subset \mathbb{P}_{m}$ and a point $p \in \mathbb{P}_{m} \backslash H$ such that the section $Y \times\{p\} \subset Y \times \mathbb{P}_{m}$ is not contained in \bar{X}. Then the fiberwise projection from p to H satisfies the conditions of Proposition 8.1 in the fibers over all

$$
y \in Y \backslash \bar{\pi}((Y \times\{p\}) \cap \bar{X})
$$

where $\bar{\pi}: Y \times \mathbb{P}_{m} \rightarrow Y$ is the projection along \mathbb{P}_{m}. Since the latter is a closed map, the inadmissible points y form a proper Zariski closed subset in Y. Therefore, there exists a nonempty principal open set $U \subset Y$ such that Proposition 8.1 can be applied fiberwise over all points $y \in U$. Since U is an affine algebraic variety as well, we can replace Y by U and X by $X \cap \pi^{-1}(U)$. After that, Corollary 8.3 gives a finite parallel fiberwise projection of X in the direction p to affine hyperplane $Y \times \mathbb{A}^{m-1}=(Y \times H) \cap\left(Y \times \mathbb{A}^{n}\right)$. If it is not surjective, we repeat the procedure until we get a finite surjection $\psi: X \rightarrow Y \times \mathbb{A}^{n}$ whose composition with the projection onto Y equals φ. This forces $\operatorname{dim} X=n+\operatorname{dim} Y$. Since the fiber $\varphi^{-1}(y)$ is surjectively and finitely mapped onto $\{y\} \times \mathbb{A}^{n}$ for all $y \in Y$, we conclude from Lemma 9.1 that $\operatorname{dim}_{x} \varphi^{-1}(y)=n=\operatorname{dim} X-\operatorname{dim} Y$ for all $x \in \varphi^{-1}(y)$.

Corollary 9.6 (SEmicontinuity Theorem)
For every regular map of algebraic manifolds $\varphi: X \rightarrow Y$, the sets

$$
X_{k} \stackrel{\text { def }}{=}\left\{x \in X \mid \operatorname{dim}_{x} \varphi^{-1}(\varphi(x)) \geqslant k\right\}
$$

are closed in X for all $k \in \mathbb{Z}$.

Proof. If $\operatorname{dim} Y=0$, then this is trivially true for all X and k. For $\operatorname{dim} Y=m>0$ we can assume by induction that the statement holds for all X, k, and all Y with $\operatorname{dim} Y<m$. Replacing Y and X by some irreducible components of maximal dimension passing through $\varphi(x)$ and x respectively allows us to assume that both X and Y are irreducible. Since $X_{k}=X$ for $k \leqslant \operatorname{dim}(X)-\operatorname{dim}(Y)$ by Theorem 9.1, the statement holds for all such k. For $k>\operatorname{dim}(X)-\operatorname{dim}(Y)$, we can replace Y and X by $Y^{\prime}=Y \backslash U$ and $X^{\prime}=\varphi^{-1}\left(Y^{\prime}\right)$, where $U \subset Y$ is that from Theorem 9.1, and apply the inductive assumption, because $X_{k} \subset X^{\prime}$ and $\operatorname{dim} Y^{\prime}<\operatorname{dim} Y$.

COROLLARY 9.7

Let $\varphi: X \rightarrow Y$ be a closed regular morphism of algebraic manifolds. Then the sets

$$
Y_{k} \stackrel{\text { def }}{=}\left\{y \in Y \mid \operatorname{dim} \varphi^{-1}(y) \geqslant k\right\}
$$

are closed in Y for all $k \in \mathbb{Z}$.

THEOREM 9.2 (DIMENSION CRITERION OF IRREDUCIBILITY)

Assume that a closed regular surjection of algebraic manifolds $\varphi: X \rightarrow Y$ has irreducible fibers of the same constant dimension. Then X is irreducible if Y is.

Proof. Let $X=X_{1} \cup X_{2}$ be reducible. Since every fiber of φ is irreducible, it is entirely contained in X_{1} or in X_{2}. Put $Y_{i} \stackrel{\text { def }}{=}\left\{y \in Y \mid \varphi^{-1}(y) \subset X_{i}\right\}$ for $i=1,2$. Then $Y=Y_{1} \cup Y_{2}$, and the subsets $Y_{1}, Y_{2} \subsetneq Y$ are proper if $X_{1}, X_{2} \subsetneq X$ are proper. Since Y_{i} coincides with the locus of points in Y over which the fibers of the restricted map $\left.\varphi\right|_{X_{i}}: X_{i} \rightarrow Y$ achieve their maximal value, we conclude from Corollary 9.7 that Y_{i} is closed in Y for both $i=1,2$. Thus, reducibility of X forces Y to be reducible.
9.3 Dimensions of projective varieties. It follows from Proposition 9.4 on p. 109 that every irreducible projective manifold $X \subset \mathbb{P}_{n}=\mathbb{P}(V)$ of dimension $\operatorname{dim} X=d$ intersects all projective subspaces $H \subset \mathbb{P}_{n}$ of dimension $\operatorname{dim} H \geqslant n-d$. We are going to show that a generic projective subspace H of dimension $\operatorname{dim} H<n-d$ does not intersect X, and therefore, the dimension $\operatorname{dim} X$ is characterized as the maximal d such that X intersects all projective subspaces of codimension d. We know from $n^{\circ} 4.6 .4$ on p .58 that all projective subspaces of codimension $d+1$ in $\mathbb{P}_{n}=\mathbb{P}(V)$ form the Grassmannian $\operatorname{Gr}(n-d, n+1)=\operatorname{Gr}(n-d, V)$, which is an irreducible projective manifold. Consider the incidence variety

$$
\begin{equation*}
\Gamma \stackrel{\text { def }}{=}\{(x, H) \in X \times \operatorname{Gr}(n-d, V) \mid x \in H\} \tag{9-5}
\end{equation*}
$$

and write $\pi_{1}: \Gamma \rightarrow X$ and $\pi_{2}: \Gamma \rightarrow \operatorname{Gr}(n-d, V)$ for the canonical projections.
EXERCISE 9.3. Convince yourself that Γ is a projective algebraic variety.
The fiber of the first projection $\pi_{1}: \Gamma \rightarrow X$ over an arbitrary point $x \in X$ consists of all projective subspaces passing trough x. It is naturally identified with the $\operatorname{Grassmannian~} \operatorname{Gr}(n-d-1, n)=$ $\operatorname{Gr}(n-d-1, V / \mathbb{k} \cdot x)$ of all $(n-d-1)$-dimensional vector subspaces in the quotient space $V / \mathbb{k} x$. Thus, π_{1} is a closed surjective morphism with irreducible fibers of the same constant dimension $(n-d-1)(d+1)$. By Theorem 9.2, the incidence variety Γ is irreducible, and

$$
\operatorname{dim} \Gamma=d+(n-d-1)(d+1)=(n-d)(d+1)-1
$$

This forces the image of the second projection $\pi_{2}(\Gamma) \subset \operatorname{Gr}(n-d, V)$, which consists of all $(n-d-1)$ dimensional projective subspaces intersecting X, to be a closed irreducible subvariety of dimension
at most $\operatorname{dim} \Gamma$ in the grassmannian $\operatorname{Gr}(n-d, V)$ of dimension $(n-d)(d+1)>\operatorname{dim} \Gamma$. Therefore, the codimension $(d+1)$ projective subspaces H not intersecting X form a dense Zariski open subset in the Grassmannian $\operatorname{Gr}(n-d, V)$.

In fact, dimensional arguments allow us to say much more about the interaction of X with the projective subspaces in \mathbb{P}_{n}. If we repeat the previous construction for the Grassmannian $\operatorname{Gr}(n-$ $d+1, V)$ of codimension- d subspaces $H^{\prime} \subset \mathbb{P}(V)$ and the incidence variety

$$
\Gamma^{\prime} \stackrel{\text { def }}{=}\left\{\left(x, H^{\prime}\right) \in X \times \operatorname{Gr}(n-d+1, V) \mid x \in H\right\}
$$

which is an irreducible projective manifold of dimension

$$
\operatorname{dim} X+\operatorname{dim} \operatorname{Gr}(n-d, n)=d+d(n-d)=d(n-d+1)
$$

for the same reasons as above, we get a surjective projection $\pi_{2}: \Gamma^{\prime} \rightarrow \operatorname{Gr}(n-d+1, V)$, because $X \cap H^{\prime} \neq \varnothing$ for all $H^{\prime} \subset \mathbb{P}(V)$. Theorem 9.1 forces the fibers of π_{2} to achieve their minimal possible dimension $\operatorname{dim} \Gamma-\operatorname{dim} \operatorname{Gr}(n-d+1, n+1)=d(n-d+1)-(n-d+1) d=0$ over all points of some open dense subset in the Grassmannian. This means that a generic projective subspace of codimension d intersects X in a finite number of points. Let us fix such a subspace H^{\prime} and draw an ($n-d-1$)-dimensional subspace $H \subset H^{\prime}$ through some intersection point $p \in X \cap H^{\prime}$. Then $H \cap X$ is a nonempty finite set. Therefore, the second projection of the incidence variety (9-5)

$$
\pi_{2}: \Gamma \rightarrow \operatorname{Gr}(n-d, V)
$$

has a zero-dimensional fiber. This forces the minimal dimension of nonempty fibers to be zero. It follows from Theorem 9.1 that $\operatorname{dim} \pi_{2}(\Gamma)=\operatorname{dim} \Gamma=\operatorname{dim} \operatorname{Gr}(n-d, V)-1$. In other words, the codimension $(d+1)$ projective subspaces $H \subset \mathbb{P}(V)$ intersecting an irreducible variety $X \subset \mathbb{P}(V)$ of dimension d form an irreducible hypersurface in the Grassmannian $\operatorname{Gr}(n-d, V)$ of all codimension$(d+1)$ projective subspaces in $\mathbb{P}_{n}=\mathbb{P}(V)$.

EXERCISE 9.4. Deduce from this that for every irreducible projective variety $X \subset \mathbb{P}_{n}$ of dimension d, there exists a unique, up to a scalar factor, irreducible homogeneous polynomial in the Plücker coordinates of a codimension- d subspace $H \subset \mathbb{P}_{n}$ that vanishes at a given H if and only if $H \cap X \neq \varnothing$.
The above analysis illustrates a method commonly used in geometry for calculating the dimensions of projective manifolds by means of auxiliary incidence varieties. Below are two more examples.

EXAMPLE 9.1 (RESULTANT)
Given collection of positive integers $d_{0}, d_{1}, \ldots, d_{n} \in \mathbb{N}$, write $\mathbb{P}_{N_{i}}=\mathbb{P}\left(S^{d_{i}} V^{*}\right)$ for the space of degree- d_{i} hypersurfaces in $\mathbb{P}_{n}=\mathbb{P}(V)$. We are going to show that the resultant variety ${ }^{1}$

$$
\mathcal{R}=\left\{\left(S_{0}, S_{1}, \ldots, S_{n}\right) \in \mathbb{P}_{N_{0}} \times \mathbb{P}_{N_{1}} \times \cdots \times \mathbb{P}_{N_{n}} \mid \cap S_{i} \neq \varnothing\right\}
$$

of a system of ($n+1$) homogeneous polynomial equations of given degrees in $n+1$ unknowns is an irreducible hypersurface, i.e., there exists a unique, up to proportionality, irreducible polynomial R in the coefficients of the equations, homogeneous in the coefficients of each equation, such that R vanishes at a given collection of polynomials $f_{0}, f_{1}, \ldots, f_{n}$ if and only if the equations

[^2]$f_{i}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=0,0 \leqslant i \leqslant n$, have a nonzero solution. The polynomial R is called the resultant of $n+1$ homogeneous polynomials of degrees $d_{1}, d_{2}, \ldots, d_{n}$.

Consider the incidence variety $\Gamma \stackrel{\text { def }}{=}\left\{\left(S_{1}, S_{2}, \ldots, S_{n}, p\right) \in \mathbb{P}_{N_{0}} \times \cdots \times \mathbb{P}_{N_{n}} \times \mathbb{P}_{n} \mid p \in \cap S_{i}\right\}$.
EXERCISE 9.5. Convince yourself that Γ is an algebraic projective variety.
Since the equation $f(p)=0$ is linear in f, all degree- d_{i} hypersurfaces in \mathbb{P}_{n} passing through a given point $p \in \mathbb{P}_{n}$ form a hyperplane in $\mathbb{P}_{N_{i}}$. Therefore, the projection $\pi_{2}: \Gamma \rightarrow \mathbb{P}_{n}$ is surjective, and all its fibers, which are the products of projective hyperplanes in the spaces $\mathbb{P}_{N_{i}}$, are irreducible and have the same constant dimension $\sum\left(N_{i}-1\right)=\sum N_{i}-n-1$. Thus, Γ is an irreducible projective variety of dimension $\sum N_{i}-1$.

EXERCISE 9.6. Write $n+1$ hypersurfaces $V\left(f_{i}\right) \subset \mathbb{P}_{n}$ of prescribed degrees $d_{i}=\operatorname{deg} f_{i}$ such that $V\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ is just one point.
The exercise shows that the projection $\pi_{1}: \Gamma \rightarrow \mathbb{P}_{N_{0}} \times \mathbb{P}_{N_{1}} \times \cdots \times \mathbb{P}_{N_{n}}$ has a nonempty fiber of dimension zero. This forces a generic nonempty fiber to be of dimension zero, and implies the equality $\operatorname{dim} \pi_{1}(\Gamma)=\operatorname{dim} \Gamma$. Therefore, $\pi_{1}(\Gamma)$ is an irreducible submanifold of codimension 1 in $\mathbb{P}_{N_{0}} \times \cdots \times \mathbb{P}_{N_{n}}$.

EXERCISE 9.7. Show that every irreducible submanifold of codimension 1 in a product of projective spaces is the zero set of an irreducible polynomial in the homogeneous coordinates on the spaces, homogeneous in the coordinates of each space.

EXAMPLE 9.2 (LINES ON SURFACES)

Algebraic surfaces of degree d in $\mathbb{P}_{3}=\mathbb{P}(V)$ form the projective space $\mathbb{P}_{N}=\mathbb{P}\left(S^{d} V^{*}\right)$ of dimension $N=\frac{1}{6}(d+1)(d+2)(d+3)-1$. The lines in \mathbb{P}_{3} form the Grassmannian $\operatorname{Gr}(2,4)=\operatorname{Gr}(2, V)$, which is isomorphic to the smooth 4 -dimensional projective Plücker quadric ${ }^{1}$

$$
P=\left\{\omega \in \Lambda^{2} V \mid \omega \wedge \omega=0\right\}
$$

in $\mathbb{P}_{5}=\mathbb{P}\left(\Lambda^{2} V\right)$ by means of the Plücker embedding, which maps a line $(a, b) \subset \mathbb{P}_{3}$ to the decomposable Grassmannian quadratic form $a \wedge b \in \mathbb{P}_{5}$. Consider the incidence variety

$$
\Gamma \stackrel{\text { def }}{=}\left\{(S, \ell) \in \mathbb{P}_{N} \times \operatorname{Gr}(2,4) \mid \ell \subset S\right\}
$$

EXERCISE 9.8. Convince yourself that $\Gamma \subset \mathbb{P}_{N} \times \operatorname{Gr}(2,4)$ is a projective algebraic variety.
The projection $\pi_{2}: \Gamma \rightarrow Q_{P}$ is surjective and all its fibers are projective spaces of the same constant dimension. Indeed, the line ℓ given by the equations $x_{0}=x_{1}=0$ lies on a surface $V(f)$ if and only if $f=x_{2} \cdot g+x_{3} \cdot h$ belongs to the image of the \mathbb{k}-linear map

$$
\psi: S^{d-1} V^{*} \oplus S^{d-1} V^{*} \rightarrow S^{d} V^{*},(g, h) \mapsto x_{2} g+x_{3} h .
$$

This image is isomorphic to the quotient of the space $S^{d-1} V^{*} \oplus S^{d-1} V^{*}$ by the subspace

$$
\operatorname{ker} \psi=\left\{(g, h)=\left(x_{3} q,-x_{2} q\right) \mid q \in S^{d-2} V^{*}\right\}
$$

Since $\operatorname{dim} S^{d-1} V^{*}=\frac{1}{6} d(d+1)(d+2)$ and $\operatorname{dim} \operatorname{ker} \psi=\frac{1}{6}(d-1) d(d+1)$, the degree- d surfaces containing ℓ form a projective space of dimension

$$
\frac{1}{6}(2 d(d+1)(d+2)-(d-1) d(d+1))-1=\frac{1}{6} d(d+1)(d+5)-1
$$

[^3]We conclude that Γ is an irreducible projective variety of dimension

$$
\operatorname{dim} \Gamma=\frac{1}{6} d(d+1)(d+5)+3
$$

The image of projection $\pi_{1}: \Gamma \rightarrow \mathbb{P}_{N}$ consists of all surfaces containing at least one line. It follows from the above analysis that $\pi_{1}(\Gamma)$ is an irreducible closed submanifold of \mathbb{P}_{N}.

EXERCISE 9.9. For every integer $d \geqslant 3$ find a degree- d surface $S \subset \mathbb{P}_{3}$ containing just a finite number of lines.

The exercise shows that for $d \geqslant 3$, the projection π_{1} has a nonempty fiber of dimension zero. Therefore, a generic nonempty fiber of π_{1} is finite, and $\operatorname{dim} \pi_{1}(\Gamma)=\operatorname{dim} \Gamma$ for $d \geqslant 3$. Since the difference $N-\operatorname{dim} \Gamma=\frac{1}{6}((d+1)(d+2)(d+3)-d(d+1)(d+5))-4=d-3$, every cubic surface in \mathbb{P}_{3} contains a line, and the set of cubic surfaces with a finite number of lines lying on them contains a dense Zariski open subset of \mathbb{P}_{N}. At the same time, there are no lines on a generic surface of degree $d \geqslant 4$.
9.4 Application: 27 lines on a smooth cubic surface. Let $S \subset \mathbb{P}_{3}$ be a smooth cubic surface provided by equation $F(x)=0$. We are going to show that there are exactly 27 lines laying on S and the configuration of these lines does not depend on S up to permutations of the lines.
9.4.1 The 10 lines associated with a given line. To construct the lines laying on S, we consider one such a line $\ell \subset S$, which exists by the previous Example 9.2, and intersect S with the planes passing through ℓ.

LEMMA 9.2

A reducible plane section of S splits into a union of either a line and a smooth conic or a triple of distinct lines. In other words, it does not contain a double line component.

Proof. Let a plane section $\pi \cap S$ contain a double line ℓ. In coordinates where π has the equation $x_{2}=0$ and ℓ is given by $x_{2}=x_{3}=0$, the equation of S acquires the form

$$
F(x)=x_{2} Q(x)+x_{3}^{2} L(x)=0
$$

for some linear L and quadratic Q. Let a be an intersection point of ℓ with the quadric $Q(x)=0$. The relations $x_{2}(a)=x_{3}(a)=Q(a)=0$ force all partial derivatives $\partial F / \partial x_{i}$ vanish at a. Thus, S is singular at a.

Corollary 9.8

For a point $p \in S$, there may be at most three lines lying on S and passing through p, and all such lines must be coplanar.

Proof. All lines passing through $p \in S$ and lying on S lie inside $S \cap T_{p} S$, which is a plane cubic that may split into a union of at most three lines.

LEMMA 9.3

For every line $\ell \subset S$, there are exactly five distinct planes $\pi_{1}, \pi_{2}, \ldots, \pi_{5}$ containing ℓ and intersecting S in a triple of lines. Let $\pi_{i} \cap S=\ell \cup \ell_{i} \cup \ell_{i}^{\prime}$, then $\ell_{i} \cap \ell_{j}=\ell_{i} \cap \ell_{j}^{\prime}=\ell_{i}^{\prime} \cap \ell_{j}^{\prime}=\varnothing$ for all $i \neq j$, and every line on S that does not intersect ℓ must intersect exactly one of the lines ℓ_{i}, ℓ_{i}^{\prime} for every $i=1, \ldots, 5$.

Proof. Fix a basis $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ in V such that $\ell=\left(e_{0} e_{1}\right)$ is given by equations $x_{2}=x_{3}=0$. Then the equation of S acquires the form

$$
\begin{align*}
L_{00}\left(x_{2}, x_{3}\right) \cdot x_{0}^{2}+2 L_{01}\left(x_{2}, x_{3}\right) \cdot & x_{0} x_{1}+L_{11}\left(x_{2}, x_{3}\right) \cdot x_{1}^{2}+ \\
& +2 Q_{0}\left(x_{2}, x_{3}\right) \cdot x_{0}+2 Q_{1}\left(x_{2}, x_{3}\right) \cdot x_{1}+R\left(x_{2}, x_{3}\right)=0 \tag{9-6}
\end{align*}
$$

where $L_{i j}, Q_{\nu}, R \in k\left[x_{2}, x_{3}\right]$ are homogeneous of degrees $1,2,3$ respectively. Let us parameterize the pencil of plains π_{ϑ} passing through ℓ by the points

$$
e_{\vartheta} \stackrel{\text { def }}{=} \pi_{\vartheta} \cap\left(e_{2}, e_{3}\right)=\vartheta_{2} e_{2}+\vartheta_{3} e_{3} \in\left(e_{2} e_{3}\right)
$$

and write $\left(t_{0}: t_{1}: t_{2}\right)$ for the homogeneous coordinates in the plane $\pi_{\vartheta}=\left(e_{0} e_{1} e_{\vartheta}\right)$ with respect to the basis $e_{0}, e_{1}, e_{\vartheta}$. The equation for the plane conic $\left(\pi_{\vartheta} \cap S\right) \backslash \ell$ is obtained by the substitution $x=\left(t_{0}: t_{1}: \vartheta_{2} t_{3}: \vartheta_{3} t_{3}\right)$ in the equation (9-6) and canceling the common factor t_{3}. The resulting conic has the Gram matrix

$$
G=\left(\begin{array}{ccc}
L_{00}(\vartheta) & L_{01}(\vartheta) & Q_{0}(\vartheta) \\
L_{01}(\vartheta) & L_{11}(\vartheta) & Q_{1}(\vartheta) \\
Q_{0}(\vartheta) & Q_{1}(\vartheta) & R(\vartheta)
\end{array}\right)
$$

whose determinant $D(\vartheta)$ is the following homogeneous degree-5 polynomial in $\vartheta=\left(\vartheta_{2}: \vartheta_{3}\right)$

$$
L_{00}(\vartheta) L_{11}(\vartheta) R(\vartheta)+2 L_{01}(\vartheta) Q_{0}(\vartheta) Q_{1}(\vartheta)-L_{11}(\vartheta) Q_{0}^{2}(\vartheta)-L_{00}(\vartheta) Q_{1}^{2}(\vartheta)-L_{01}(\vartheta)^{2} R(\vartheta)
$$

It has five roots, and we have to show that all these roots are simple. Every root corresponds to a splitting of the conic into a pair of lines $\ell^{\prime}, \ell^{\prime \prime}$. There are two possibilities: either the intersection point $\ell^{\prime} \cap \ell^{\prime \prime}$ lies on ℓ or it lies outside ℓ.

In the first case, we can fix a basis in order to have $\ell^{\prime}=\left(e_{0} e_{2}\right)$ and $\ell^{\prime \prime}=\left(e_{0}\left(e_{1}+e_{2}\right)\right)$. These lines are given by the equations $x_{3}=x_{1}=0$ and $x_{3}=\left(x_{1}-x_{2}\right)=0$, and the splitting appears for $\vartheta=(1: 0)$. The multiplicity of this root equals the highest power of ϑ_{3} dividing $D\left(\vartheta_{2}, \vartheta_{3}\right)$. Since $\ell, \ell^{\prime}, \ell^{\prime \prime} \subset S$, the equation (9-6) has the form $x_{1} x_{2}\left(x_{1}-x_{2}\right)+x_{3} \cdot q(x)$ for some quadratic $q(x)$. Thus, elements of G that may be not divisible by ϑ_{3} are exhausted by $L_{11} \equiv x_{2}\left(\bmod \vartheta_{3}\right)$ and $Q_{1} \equiv-x_{2}^{2} / 2\left(\bmod \vartheta_{3}\right)$. So, $D\left(\vartheta_{2}, \vartheta_{3}\right) \equiv-L_{00} Q_{1}^{2}\left(\bmod \vartheta_{3}^{2}\right)$. This term is of order one in t_{3} if the monomials $x_{1} x_{2}^{2}$ and $x_{0}^{2} x_{2}$ appear in (9-6) with non zero coefficients. The first of these two monomials is the only monomial that gives a nonzero contribution in $\partial F / \partial x_{1}$ computed at $e_{2} \in S$ and the second in $\partial F / \partial x_{2}$ at $e_{0} \in S$. Hence, they have to appear in F.

In the second case, we fix a basis in order to have $\ell^{\prime}=\left(e_{0} e_{2}\right), \ell^{\prime \prime}=\left(e_{1} e_{2}\right)$, the lines given by the equations $x_{3}=x_{1}=0$ and $x_{3}=x_{0}=0$. The splitting happens again for $\vartheta=(1: 0)$. The equation (9-6) turns to $x_{0} x_{1} x_{2}+x_{3} \cdot q(x)$. A nonzero modulo ϑ_{3} contribution may come only from $L_{01} \equiv x_{2} / 2\left(\bmod \vartheta_{3}\right)$. Thus, $D\left(\vartheta_{2}, \vartheta_{3}\right) \equiv-L_{01}^{2} R\left(\bmod \vartheta_{3}^{2}\right)$ is of the first order in t_{3} if $x_{2}^{2} x_{3}$ and $x_{0} x_{1} x_{2}$ appear in (9-6). The first is the only monomial giving a non zero contribution to $\partial F / \partial x_{3}$ computed at $e_{2} \in S$. Thus, it does appear. The second does too, because otherwise F would be divisible by x_{3}.

All the remaining statements of the lemma follow immediately from Corollary 9.8, Lemma 9.2 and the fact that every line in \mathbb{P}_{3} intersects every plane.

LEMMA 9.4
Any four mutually nonintersecting lines on S do not lie simultaneously on a quadric, and there exist either one or two (but no more!) lines on S intersecting each of the four lines.

Proof. If the four given lines lie on some quadric Q, then Q is smooth and the lines belong to the same ruling family ${ }^{1}$. Every line from the second ruling family lies on S, because a line passing through four distinct points of S must lie on S. Hence, $Q \subset S$ and therefore, S is reducible. It remains to apply Exercise 2.14.
9.4.2 The configuration of all 27 lines. Fix two nonintersecting lines $a, b \subset S$ and consider the five pairs of lines $\ell_{i}, \ell_{i}^{\prime}$ provided by Lemma 9.3 applied to the line $\ell=a$. Write ℓ_{i} for the lines that do meet b, and ℓ_{i}^{\prime} for the remaining lines, which do not. There are five more lines $\ell_{i}^{\prime \prime}$ coupled with ℓ_{i} by the Lemma 9.3 applied to the line $\ell=b$. Every line $\ell_{i}^{\prime \prime}$ intersects b but neither a nor ℓ_{j} for $j \neq i$. Thus, $\ell_{i}^{\prime \prime}$ intersects all ℓ_{j}^{\prime} with $j \neq i$. Every line $c \subset S$, different from the 17 lines just constructed, intersects neither a nor b. At the same time, for each i, it must intersect either ℓ_{i} or ℓ_{i}^{\prime}. By Lemma 9.4, the lines intersecting $\geqslant 4$ of the ℓ_{i} 's are exhausted by a and b. Let c intersect $\leqslant 2$ of the ℓ_{i} 's, say $\ell_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{3}^{\prime}$ and either ℓ_{4}^{\prime} or ℓ_{5}. In both cases, we already have two distinct lines a, $\ell_{5}^{\prime \prime}$ other than c intersecting all the four lines. This contradicts to Lemma 9.4. We conclude that c intersects exactly three of the five lines ℓ_{i}.

LEMMA 9.5

The remaining lines $c \subset S$ stay in bijection with 15 triples $\{i, j, k\} \subset\{1,2,3,4,5\}$.
Proof. For every triple of lines ℓ_{i}, there is at most one line c other than a intersecting the three given lines and the remaining two lines ℓ_{j}^{\prime}, because these five lines are mutually nonintersecting. On the other hand, it follows from Lemma 9.3 that for every i, there are exactly 10 lines on S intersecting the line ℓ_{i}. Four of them are $a, b, \ell_{i}^{\prime}, \ell_{i}^{\prime \prime}$. Each of the other six lines must intersect exactly two of the remaining four ℓ_{j} 's. So, we have a bijection between these six lines and the $6=\binom{4}{2}$ pairs of ℓ_{j} 's.

Corollary 9.9

Every smooth cubic surface $S \subset \mathbb{P}_{3}$ contains exactly 27 lines and their incidence matrix ${ }^{2}$ is the same for all S up to reordering the lines.

EXERCISE 9.10*. Write $G \subset S_{27}$ for the group of all permutations of the 27 lines that preserve all pairwise incidences between them. Consider the field of 4 elements $\mathbb{F}_{4} \stackrel{\text { def }}{=} \mathbb{F}_{2}[\omega] /\left(\omega^{2}+\omega+1\right)$, where $\mathbb{F}_{2}=\mathbb{Z} /(2)$. The extension $\mathbb{F}_{2} \subset \mathbb{F}_{4}$ is equipped with the conjugation automorphism ${ }^{3}$ $z \longmapsto \bar{z} \stackrel{\text { def }}{=} z^{2}$, which lives \mathbb{F}_{2} fixed and permutes two roots of the polynomial $\omega^{2}+\omega+1$. Show that the unitary ${ }^{4} 4 \times 4$ matrices with elements in \mathbb{F}_{4}, considered up to proportionality, form a (normal) subgroup of index 2 in G, and find the order of G.

[^4]
Comments to some exercises

Exrc. 9.1. Let $X_{1}, X_{2} \subset X$ be two closed irreducible subsets, and $U \subset X$ an open set such that both intersections $X_{1} \cap U, X_{2} \cap U$ are nonempty. Then $X_{1}=X_{2} \Longleftrightarrow X_{1} \cap U=X_{2} \cap U$, because $X_{i}=\overline{X_{i} \cap U}$.

Exrc. 9.3. Chose some basis in H and write the coordinates of the basis vectors together with the coordinates of a variable point $p \in \mathbb{P}_{n}$ as the rows of $(n-d+1) \times(n+1)$-matrix. Then the condition $p \in H$ is equivalent to vanishing of all the minors of maximal degree $n-d+1$ in these matrix. The latter are quadratic bilinear polynomials in the homogeneous coordinates of p and the Plücker coordinates ${ }^{1}$.
Exrc. 9.5. The set $\Gamma \subset \mathbb{P}_{N_{0}} \times \cdots \times \mathbb{P}_{N_{n}} \times \mathbb{P}_{n}$ is given by the equations

$$
f_{0}(p)=f_{1}(p)=\cdots=f_{n}(p)=0
$$

on $f_{i} \in \mathbb{P}_{N_{i}}$ and $p \in \mathbb{P}_{n}$, linear homogeneous in each f_{i} and homogeneous of degrees d_{i} in p.
ExRC. 9.6. Take $n+1$ hyperplanes intersecting at one point and exponentiate their linear equations in the prescribed degrees.
EXRC. 9.7. Consider the product $\mathbb{P}_{n_{1}} \times \mathbb{P}_{n_{2}} \times \cdots \times \mathbb{P}_{n_{m}}$ and write $x^{(i)}=\left(x_{0}^{(i)}: x_{1}^{(i)}: \ldots: x_{n_{i}}^{(i)}\right)$ for the set of homogeneous coordinates on the i
divs th factor $\mathbb{P}_{n_{i}}$. Modify the proof of Lemma 8.1 on p. 103 to show that any closed submanifold $Z \subset \mathbb{P}_{1} \times \mathbb{P}_{2} \times \cdots \times \mathbb{P}_{m}$ can be described by appropriate system of global polynomial equations $f_{v}\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)=0$, homogeneous in every group of variables $x^{(i)}$. Then assume that Z is irreducible of codimension 1 , show that there exists an irreducible polynomial $q\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)$ vanishing on Z, and use the dimensional argument to check that $Z=V(q)$ is the zero set of q. Finally, use the strong Nullstellensatz to show that for irreducible polynomials q_{1}, q_{2}, the equality $V\left(q_{1}\right)=V\left(q_{2}\right)$ forces q_{1}, q_{2} to be proportional.
Exrc. 9.8. Identify $\operatorname{Gr}(2,4)$ with the Plücker quadric $P \subset \mathbb{P}_{5}=\mathbb{P}\left(\Lambda^{2} V\right)$ by sending a line $(a, b) \subset$ \mathbb{P}_{3} to the point $a \wedge b \in \mathbb{P}_{5}$. The line (a, b) lies on the surface $V(f) \subset \mathbb{P}_{3}$ if and only if the polynomial f vanishes identically on the linear span of vectors a, b, which is the linear support of the Grassmannian polynomial $a \wedge b$ and coincides with the image of the map $V^{*} \rightarrow V, \xi \mapsto \xi\llcorner(a \wedge b)$, contracting a covector $\xi \in V^{*}$ with the first tensor factor of $(a \otimes b-b \otimes a) / 2 \in$ Skew $^{2} V$. Verify that the identical vanishing of the function $\xi \mapsto f(\xi\llcorner(a \wedge b))$ can be expressed by a system of bihomogeneous equations on the coefficients of f and the Plücker coordinates $x_{i j}$ of the bivector $a \wedge b=\sum_{0 \leqslant i<j \leqslant 3} x_{i j} e_{i} \wedge e_{j}$.
Exrc. 9.9. Show that the affine surface $x_{1} x_{2} \ldots x_{n}=1$ contains no affine lines and its projective closure intersects the hyperplane of infinity in n lines $x_{i}=0$.
Exrc. 9.10. Hint: use the fact that over \mathbb{F}_{4}, the Fermat cubic form $\sum x_{i}^{3}$, whose zero set is a smooth cubic surface, coincides with the standard Hermitian inner product $\sum x_{i} \bar{x}_{i}$. The final answer is $|G|=51840=2^{7} \cdot 3^{4} \cdot 5$.

[^5]
[^0]: ${ }^{1}$ See Lemma 9.1 on p. 107.

[^1]: ${ }^{1}$ For $i=1$ this means that f_{1} is not a zero divisor in $\mathbb{k}[X]$. A sequence of functions possessing this property is called a a regular sequence, and the corresponding subvariety $V\left(f_{1}, f_{2}, \ldots, f_{m}\right) \subset X$ ia called a complete intersection.

[^2]: ${ }^{1}$ See n ${ }^{\circ} 6.8$ on p. 79.

[^3]: ${ }^{1}$ Compare with Problem 17.20 of Algebra I

[^4]: ${ }^{1}$ See $n^{\circ} 2.5 .1$ on p .23.
 ${ }^{2}$ That is, the matrix of size 27×27 whose rows and columns stay in bijection with the lines, and the element in a position (i, j) equals 1 if $\ell_{i} \cap \ell_{j} \neq \varnothing$ and 0 otherwise.
 ${ }^{3}$ It is quite similar to the complex conjugation in the extension $\mathbb{R} \subset \mathbb{C}$.
 ${ }^{4}$ That is, satisfying $\bar{M} \cdot M^{t}=E$.

[^5]: ${ }^{1}$ Recall that they equal the top degree minors of the transition matrix from some basis in H to the the standard basis in V, see Example 8.4 on p. 101.

