
§8 Algebraic manifolds

Everywhere in §8 we assume on default that the ground field 𝕜 is algebraically closed.
8.1 Definitions and examples. The definition of an algebraic manifold follows the same template
as the definitions of manifold in topology and differential geometry. It can be outlined as follows.
A manifold is a topological space such that every point ∈ possesses an open neighborhood

∋ , called a local chart, which is equipped with the homeomorphism ∶ ⥲ identifying
some standard local model with , and any two local charts ∶ ⥲ , ∶ ⥲
are compatible, meaning that the homeomorphism between open subsets − ( ∩ ) ⊂ and

− ( ∩ ) ⊂ provided by the composition − ∘ is a regular isomorphism. In topology
and differential geometry, the local model = ℝ does not depend on , and the regularity of
the transition homeomorphism

≝ � − ∘ | − ( ∩ ) ∶ − ( ∩ ) ⥲ − ( ∩ ) , (8-1)

means that it will be a diffeomorphism of open subsets inℝ in the differential geometry, and means
nothing besides to be a homeomorphism in the topology. In algebraic geometry, the local model

is an arbitrary algebraic variety that may depend on ⊂ and an a affine algebraic variety.
Thus, an algebraic manifold may look locally, say, as a union of a line and a plane in 𝔸 , crossing
or parallel, and this picture may vary from chart to chart. The regularity of homeomorphism (8-1),
in algebraic geometry, means that the maps , = − are described in affine coordinates
by some rational functions, which are regular within both open sets − ( ∩ ), − ( ∩ ).
This provides every algebraic manifold with a well defined sheaf 𝒪 of regular rational functions
with values in the ground field 𝕜, in the same manner as the smooth functions on a manifold are
introduced in differential geometry.

Let us now give precise definitions. Given a topological space , an affine chart on is a
homeomorphism ∶ ⥲ between an affine algebraic variety over 𝕜, considered with
the Zariski topology, and an open subset ⊂ , considered with the topology induced from .
Two affine charts ∶ ⥲ , ∶ ⥲ on are called compatible if the pullback map

∗ ∶ ↦ ∘ , provided by the transition homeomorphism (8-1), establishes a well defined
isomorphism of 𝕜-algebras1

∗ ∶ 𝒪 ( − ( ∩ )) ⥲ 𝒪 ( − ( ∩ )) .

An open covering = ⋃ by mutually compatible affine charts ⊂ is called an algebraic
atlas on . Two algebraic atlases are declared to be equivalent if their union is an algebraic atlas
as well. A topological space equipped with an equivalence class of algebraic atlases is called an
algebraic manifold or algebraic variety2. An algebraic manifold is said to be of finite type if it allows
a finite algebraic atlas.
Exercise 8.1. Verify that any algebraic manifold of finite type is a Noetherian topological space
in the sense of Remark 7.1. on p. 90 and therefore admits a unique decomposition into a finite
union of the irreducible components.

1Recall that for an open set in an affine algebraic variety , we write 𝒪 ( ) = { ∈ 𝕜( ) | ⊂
Dom( )} for the 𝕜-algebra of rational functions on regular everywhere in , see n∘ 7.3.1 on p. 91 for
details.

2without the epithet «affine»

97



98 §8Algebraic manifolds

Example 8.1 (projective spaces)
The projective space ℙ = ℙ (𝕜 + ) with homogeneous coordinates = ( ∶ ∶ … ∶ ) is
covered by the ( + ) standard affine charts = {( ∶ ∶ … ∶ )| ≠ }, ⩽ ⩽ . Write

= 𝔸(𝕜 ) for the affine space with coordinates1 = ( , , … , , − , , + , … , , ). For each
, there exists a bijection

∶ ⥲ , ↦ ( , ∶ … ∶ , − ∶ ∶ , + ∶ … ∶ , ) . (8-2)

Preimage of the intersection ∩ under this bijection is the principal open set 𝒟 ( , ) ⊂ .
Exercise 8.2. Verify that the transition map = − ∶ 𝒟 ( , ) ⥲ 𝒟 ( , ), ↦ −

, ⋅ ,
establishes the regular isomorphism between affine algebraic varieties

𝒟 ( , ) = Specm 𝕜[ � −
, , , , … , , − , , + , … , , ] � , (8-3)

𝒟 ( , ) = Specm 𝕜[ � −
, , , , … , , − , , + , … , , ] � . (8-4)

Therefore, transferring the Zariski topology from ≃ 𝔸 to by means of the bijection (8-2)
provides ℙ with a well defined topology whose restriction on ∩ does not depend on what
source, or , it comes from. In this topology, all bijections (8-2) certainly are homeomorphisms.
Thus, ℙ is an algebraic manifold of finite type locally isomorphic to the affine space 𝔸 .

Example 8.2 (Grassmannians)
Recall2 that the set of all -dimensional vector subspaces in a given vector space over 𝕜 is called
the Grassmannian Gr( , ), and for the coordinate space = 𝕜 we write Gr( , ) instead of
Gr( ,𝕜 ). We have seen in n∘ 5.2 on p. 64 that the points of Gr( , ) can be viewed as the orbits
of × matrices of rank under the natural action of GL (𝕜) by left multiplication. The orbit of
the matrix corresponds to the subspace ⊂ 𝕜 spanned by the rows of , and is recovered
from up to the action GL (𝕜) as the matrix whose rows are the coordinates of some linearly
independent vectors , , … , ∈ in the standard basis of 𝕜 . This leads to the following
covering of Gr( , ) by ( ) affine charts ≃ 𝔸 ( − ), called standard and numbered by increasing
collections of indexes = ( , , … , ) , ⩽ < < ⋯ < ⩽ . Write ( ) for the ×
submatrix of × matrix formed by the columns with numbers , , … , , and for the set
of GL (𝕜)-orbits of all matrices with det ( ) ≠ . Every such an orbit contains a unique matrix
with ( ) = , namely, = ( )− ⋅ .
Exercise 8.3. Convince yourself that consists of those -dimensional subspaces ⊂ 𝕜
which are isomorphically projected onto the coordinate -plane spanned by the standard basis
vectors , , … , along the transversal coordinate ( − )-plane spanned by the remain-
ing standard basis vectors.

Write = Mat ×( − )(𝕜) ≃ 𝔸 ( − ) for the affine space of ×( − ) matrices whose columns are
numbered in order by the collection of indexes = { , , … , } ∖ , complementary to . There
is a bijection ∶ ⥲ , ↦ GL (𝕜) ⋅ ( ), where the × matrix ( ) has ( ( )) = ,
and ( ( )) = , i.e., it is obtained from by the order-preserving insertion of the columns

1The first index is the order number of the chat, the second index numbers the coordinates within the
th chart and takes values ⩽ ⩽ , ≠ .

2See n∘ 4.6.4 on p. 58.
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of between the columns of in such the way that the columns of are assigned the numbers
, , … , in the resulting × matrix.
Exercise 8.4. Verify that the inverse bijection maps ↦ ( ( )− ⋅ ), and the result does
not depend on the choice of in the orbit GL (𝕜) ⋅ .

Therefore, − ( ∩ ) = 𝒟(�det (� ( )) �) � is the principal open set in . The transition
map = − sends 𝒟(�det ( � ( )) �)� ⊂ to 𝒟(�det ( � ( )) �) � ⊂ by the rule ↦

(� − (� ( )) � ⋅ ( )) � and gives a regular isomorphism of affine algebraic varieties. The inverse
isomorphism takes ↦ ( − ( ( )) ⋅ ( )).
Exercise 8.5. Check this.

The same arguments as in the previous example show that Gr( , ) is an algebraic variety of finite
type locally isomorphic to the affine space 𝔸 ( − ) = 𝔸 (Mat ×( − )(𝕜)). Note that for = ,

= + , the standard algebraic atlas { } on Gr( , ) is precisely the standard atlas { } on
ℙ described in Example 8.1.

Example 8.3 (direct product of algebraic manifolds)
The set-theoretical direct product of algebraic manifolds , is canonically equipped with the
algebraic atlas formed by the mutual direct products × of affine charts ⊂ , ⊂ . Thus,

× is an algebraic manifold.
8.2 Regular and rational maps. Given an algebraic manifold , a function ∶ → 𝕜 is called
regular at a point ∈ if there exist an affine chart ∶ ⥲ with ∈ and a rational
function ̃ ∈ 𝕜( ) such that − ( ) ∈ Dom( )̃ and ∗ ( ) = (̃ ) for all ∈ Dom .̃ For an
open subset ⊂ , the regular everywhere in functions → 𝕜 form a 𝕜-algebra denoted by
𝒪 ( ) and called the algebra of regular functions on . The assignment ↦ 𝒪 ( ) provides the
topological space with the sheaf of 𝕜-algebras, called the structure sheaf1 or the sheaf of regular
functions on .
Exercise 8.6. For any affine chart ∶ ⥲ on , verify that the pullback of the regular
functions along assigns the isomorphism ∗ ∶ 𝒪 ( ) ⥲ 𝕜[ ].

A map of algebraic manifolds ∶ → is called a regular morphism if is continuous and for any
open ⊂ , the pullback of regular functions along | − ( ) gives a well defined homomorphism
of 𝕜-algebras |∗ ∶ 𝒪 ( ) → 𝒪 ( − ( )), ↦ ∘ .
Exercise 8.7. Identify 𝒪 ( ) with the set of regular morphisms → 𝔸 .
8.2.1 Closed submanifolds. Let be an algebraic manifold. Any closed subset ⊂ pos-

sesses the natural structure of algebraic manifold. Namely, for any affine chart ∶ ⥲ , the
set − ( ∩ ) is closed in the affine algebraic variety and therefore, has the natural structure
of affine algebraic variety with the coordinate algebra

𝕜[ ]∕ ∗ ( ∩ ) ≃ 𝒪 ( )∕ ( ∩ ) ,

where ( ∩ ) = { ∈ 𝒪 ( ) | ( ) = for all ∈ ∩ }. The affine charts
− ( ∩ ) ⥲ ∩ ⊂

1See n∘ 7.3.1 on p. 91.
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certainly form an algebraic atlas on . The assignment ↦ ( ∩ ) defines a sheaf of ideals on
denoted by ℐ ⊂ 𝒪 and called the ideal sheaf of the closed submanifold ⊂ .

Every sheaf of ideals 𝒥 ⊂ 𝒪 determines a closed submanifold (𝒥) ⊂ whose intersection
with any affine chart ⊂ is the zero set of the ideal 𝒥( ) ⊂ 𝒪 ( ) ≃ 𝕜[ ] in the affine
algebraic variety . Note that the ideal sheaf ℐ( (𝒥)) = √𝒥 has not to coincide with the sheaf 𝒥
of equations describing the submanifold (𝒥).

A regular morphism ∶ → is called a closed immersion if ( ) ⊂ is a closed submanifold
of and establishes an isomorphism between and ( ).
Exercise 8.8. Convince yourself that an algebraic manifold admits a closed immersion in affine
space if and only if is an affine algebraic variety in the sense of n∘ 6.7 on p. 77.
8.2.2 Families of manifolds. Any regular morphism ∶ → can be viewed as a family of

closed submanifolds = − ( ) ⊂ parametrized by the points ∈ . In this case is referred
to as the base of family . Given two families ∶ → , ′ ∶ ′ → over the same base , a
regular morphism ∶ → ′ is called a morphism of families or morphism over if = ′ ∘ , i.e.,
if maps to ′ for all ∈ . A family ∶ → is called constant or trivial if it is isomorphic
over to the canonical projection ∶ × → from the direct product of the base and some
fixed manifold .

8.2.3 Rational maps. Let be an algebraic manifold and ⊂ an open dense subset. A
regular morphism ∶ → is called a rational map from to . Given such a map, we write

∶ 99K although this discards the information about . A regular morphism ∶ → is
called an extension of if ⊃ and | = . The union of all open sets ⊃ on which can
be extended, is called the domain of rational map ∶ 99K and denoted Dom( ).
Exercise 8.9 (Cremona’s quadratic involution). Verify that the prescription

( ∶ ∶ ) ↦ ( − ∶ − ∶ − )

determines a rational map ∶ ℙ 99K ℙ whose domain is the whole of ℙ except three points.
Find these points and describe the image of .

Despite its name, a rational map ∶ 99K is not a map «from » in the set-theoretical sense,
because may be undefined at some points. In particular, the composition of rational maps may be
undefined, e.g., if the image of the first map falls outside the domain of the second. However, the
rational maps often appear in various applications and play an important role within the algebraic
geometry itself. For example, the tautological projection 𝔸( ) 99K ℙ( ), which sends a point of
𝔸( ) provided by a vector ∈ to the point of ℙ( ) provided by the same vector, is a surjective
rational map regular everywhere outside the origin.
8.3 Separated manifolds. The standard atlas on ℙ consists of two charts

∶ 𝔸 ⥲ ⊂ ℙ , = , .

Their intersection is visible within each chart as the complement to origin
− ( ∩ ) = − ( ∩ ) = 𝔸 ∖ { } = { ∈ 𝔸 | ≠ } .

The charts are glued together along this intersection by means of the transition map

∶ ↦ ∕ . (8-5)
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If, instead of rational map (8-5), we use much simpler gluing rule

̃ ∶ ↦ , (8-6)

we get another manifold looking as an affine line with the double origin: -----------------------------------∶---------------------------------- .
Such kind of pathology is called non-separateness. It has appeared because the gluing rule (8-6)
considered as the binary relation on 𝔸 , i.e., as the subset of 𝔸 × 𝔸 = 𝔸 , is not closed. Namely,
it is provided by the line = without the point = = . This gluing rule can be completed by
continuity up to the whole line = , whereupon the double point disappears.

In general situation, the separateness phenomenon is formalized as follows. By the universal
property of the direct product, for any two affine charts , on an algebraic manifold , the
inclusions ↩ ∩ ↪ produce the inclusion ∩ ↪ × whose image is the
intersection of the affine chart × on × with the diagonal = {( , ) ∈ × | ∈ }.
In other words, the gluing rule for charts , , considered as a subset of × , is ∩ × .
For example, the gluing rule (8-5) corresponds to the immersion (𝔸 ∖ ) ↪ 𝔸 , ↦ ( , − ),
whose image ℙ ∩ × is a closed subset of × ≃ 𝔸 , namely, the hyperbola = . In
contrast, the trivial transition map (8-6) produces the immersion (𝔸 ∖ ) ↪ 𝔸 , ↦ ( , ), whose
image is not closed in 𝔸 . An algebraic manifold is called separated if the diagonal ⊂ × is
closed in × . In more expanded form, this means that for every pair of affine charts , ⊂ ,
the canonical map ∩ ↪ × is a closed immersion.

For example, both 𝔸 and ℙ are separated, because the diagonals in 𝔸 × 𝔸 and ℙ × ℙ
are described by the polynomial equations = and = respectively1. Every closed
submanifold ⊂ in a separated manifold is separated as well, because the diagonal of ×
is the preimage of the diagonal ⊂ × under the regular map × ↪ × provided by
the inclusion ↪ . In particular, all affine and projective varieties are separated and have finite
type.

8.3.1 Closeness of the graph of a regular map Let ∶ → be a regular morphism of
algebraic manifolds. The preimage of the diagonal ⊂ × under the map ×Id ∶ × → ×
is called the graph of and denoted . As a set, = {( , ( )) ∈ × | ∈ }. If is
separated, the graph of any regular morphism ∶ → is closed. For example, the graph of a
regular morphism of affine algebraic varieties ∶ Specm( ) → Specm( ) is described by a system
of equations ⊗ = ∗( ) ⊗ in ⊗ , where runs through .
8.4 Projective varieties. An algebraic manifold is called projective if it admits a closed immer-
sion into projective space, i.e., is isomorphic to a closed submanifold of ℙ for some ∈ ℕ.
Exercise 8.10. Verify that the solution set of every system of homogeneous polynomial equations
in the homogeneous coordinates in ℙ is a closed submanifold of ℙ .

Example 8.4 (Plücker coordinates)
The Plücker embedding from n∘ 4.6.4 on p. 58

, ∶ Gr( , ) ↪ ℙ( ) , ↦ , (8-7)
1The first formula relates affine coordinates ( , … , , , , … , ) in 𝔸 ×𝔸 = 𝔸 , whereas the

second deals with two collections of homogeneous coordinates ( ∶ ∶ … ∶ ), ( ∶ ∶ … ∶ ) on
ℙ × ℙ (note that they cannot be combined together in one collection). We will see in Exercise 8.12 on
p. 102 that the latter equations actually determine a closed submanifold of ℙ × ℙ in the sense of n∘ 8.2.1.
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maps the Grassmannian Gr( , ) isomorphically onto projective algebraic variety determined in
ℙ( ) by the quadratic Plücker’s relations from formula (4-44) on p. 57. In the matrix notations
from Example 8.2 on p. 98, the Plücker embedding maps × matrix , formed by the coordinate
rows of some basis vectors in ⊂ 𝕜 expanded through the standard basis vectors ∈ 𝕜 , to the
point of ℙ( 𝕜 ) whose th homogeneous coordinate in the basis formed by the monomials

= ∧ ∧ … ∧

equals det ( ), the degree- minor of situated in the columns with numbers from .
Exercise 8.11. Check this and convince yourself that the Plücker embedding is regular.

The collection of ( ) minors det ( ) is called the Plücker coordinates of the subspace ⊂ 𝕜 .
Since the pullbacks of the coordinate functions on ℙ( 𝕜 ) are the polynomials in the affine co-
ordinates on the Grassmannian, the map (8-7) is a regular closed immersion of the Grassmannian
into projective space. Therefore, the Grassmannians, as well as all their closed submanifolds, are
projective algebraic varieties.

Exercise 8.12. Show that the direct product of projective manifolds is projective, and use this to
prove that every subset in ℙ ×ℙ ×⋯×ℙ defined by a system of polynomial equations in
homogeneous coordinates such that every equation is homogeneous in every set of coordinates
is a projective algebraic variety.

Example 8.5 (blowup of point on ℙ )
Write ≃ ℙ − for the projective space formed by all lines in ℙ passing through a given point

∈ ℙ . The incidence graph ℬ = {( , ℓ) ∈ ℙ × | ∈ ℓ} is called the blowup of the point
∈ ℙ . The projection ∶ ℬ ↠ ℙ is one-to-one over ℙ ∖ , whereas the preimage of

− ( ) = { } × ⊂ ℙ ×

coincides with the whole space . This fiber is called the exceptional divisor1 of the blowup. The
second projection ∶ ℬ ↠ represents ℬ as a line bundle over , i.e., the family of projective
lines ( ) ⊂ ℙ parametrized by the points ∈ . This line bundle is called the tautological line
bundle over the projective space . It follows from Exercise 8.12 that ℬ is a projective algebraic
manifold. Indeed, choose some homogeneous coordinates in ℙ such that = ( ∶ ∶ … ∶ ),
and identify with the projective hyperplane ( ) = {( ∶ ∶ … ∶ )} ⊂ ℙ by mapping a
line ℓ ∋ to the point = ℓ ∩ ( ). Then the collinearity of points , , is equivalent to the
following system of homogeneous quadratic equations on the pair ( , ) ∈ ℙ × :

rk
⎛
⎜
⎜
⎝

⋯
⋯
⋯

⎞
⎟
⎟
⎠

= or = , ⩽ < ⩽ .

Geometrically, the blowup of ∈ ℙ can be imagined as the replacement of the point by the
projective space glued to the space ℙ , punctured at , in such a way that every line ℓ ⊂ ℙ
approaching passes through the point ℓ ∈ .

1Given an irreducible algebraic manifold , a (Weil) divisor on is an element of the free abelian group
generated by all closed irreducible submanifolds of codimension in (the dimensions of algebraic varieties
will be discussed in §9)
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Lemma 8.1
Every closed submanifold ⊂ ℙ can be described as a set of solutions to some system of homoge-
neous polynomial equations in homogeneous coordinates in ℙ .

Proof. We write ( ∶ ∶ … ∶ ) for the homogeneous coordinates in ℙ and use the nota-
tions from Example 8.1 on p. 98 for the standard affine charts ⊂ ℙ and the standard affine
coordinates , therein. For each , the intersection ∩ is the zero set ( ) of some ideal
in the polynomial ring in variables , = ∕ , ⩽ ⩽ , ≠ . Every polynomial in
this ring can be rewritten as ( , , … , )∕ , where = deg and ∈ 𝕜[ , , … , ] is
homogeneous of degree and turns to for = , = , , ≠ :

( , , … , , − , , , + , … , , ) = ( , , … , , − , , + , … , , ) .

Let us fix generators , of the ideal and write , ∈ 𝕜[ , , … , ] for their homogenizations
just described. Then coincides with the solution set of the system of polynomial equations

⋅ , ( , , … , ) = , where ⩽ ⩽ and for each , the index numbers the chosen
generators , of the ideal . To check this, it is enough to establish the coincidence ∩ = ∩
for every . In terms of the affine coordinates , on , the intersection ∩ ( ⋅ ) is described
by the equation

( , , … , , − , , , + , … , , ) = ( , , … , , − , , + , … , , ) = .

Hence, intersects the set of common zeros of the polynomials ⋅ , , whose coincides with
of the chart, exactly along the set ∩ . Therefore, ∩ ⊂ ∩ . It remains to check that

every homogeneous polynomial ⋅ , with ≠ vanishes on ∩ as well. The first factor
vanishes along the hyperplane ( , ) ⊂ . The principal open set in ∩ complementary to
this hyperplane lies within ∩ ∩ ⊂ ∩ . As we have already seen, the second factor ,
vanishes on ∩ . �

Example 8.6 (an illustration to the proof of Lemma 8.1)
The zero set of the homogeneous polynomial on ℙ is the union of three lines complemen-
tary to the standard affine charts. The affine equations of this set in the charts , , are,
respectively, , , = , , , = , , , = . Let ⊂ ℙ be the closed submanifold locally
described by these equations. Being applied to this , the previous proof transforms the left hand
sides of the local affine equations to the homogeneous polynomials , = , , = ,

, = , and then serves ⋅ , = , ⋅ , = , ⋅ , = as the global homogeneous
equations for . They all coincide with the initial equation = in our case.
8.5 Closeness of projective morphisms. Projective varieties behave similarly to the compact
manifolds in the differential geometry in the sense that every regular map from a projective manifold
to an arbitrary separated algebraic manifold is closed meaning that the image of every closed

subset ⊂ is closed in . The proof is based on the following lemma.
Lemma 8.2
The projection ∶ ℙ ×𝔸 ↠ 𝔸 is closed, i.e., ( ) ⊂ 𝔸 is closed for every closed ⊂ ℙ ×𝔸 .

Proof. Write = ( ∶ ∶ … ∶ ) and = ( , , … , ) for the homogeneous and affine
coordinates on ℙ and 𝔸 respectively. Let a closed subset ⊂ ℙ ×𝔸 be described by a system
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of polynomial equations ( , ) = , homogeneous in . Then ( ) ⊂ 𝔸 consists of all ∈ 𝔸
such that the system of homogeneous equations ( , ) = in has a non zero solution. The
latter holds if and only if the coefficients of the homogeneous forms ( , ) satisfy the system
of resultant polynomial equations defined in n∘ 6.8 on p. 79. Since the coefficients of the forms

( , ) are polynomials in , we conclude that ( ) is described by polynomial equations. �

Corollar 8.1
Let be a projective algebraic variety. Then for all algebraic manifolds , the projection × ↠
is closed.

Proof. It is enough to prove this statement separately for every affine chart of instead of the
whole . Thus, we may assume that is affine. In this case, × is the closed subset in ℙ ×𝔸 ,
and the projection in question is the restriction of the projection ℙ × 𝔸 ↠ 𝔸 , which is closed,
on this closed subset. Therefore, it closed as well. �

Theorem 8.1
Every regular morphism ∶ → from a projective variety to a separated manifold is closed.

Proof. Write ⊂ × for the graph1 of the regular map ∶ → . It is closed, because
is separated2. For every ⊂ , the image ( ) ⊂ coincides with the image of the intersection

∩ ( × ) ⊂ × under the projection × ↠ . If is closed in , the product × is closed
in × . Since is projective, the projection × ↠ maps the closed set ∩ ( × ) ⊂ ×
to the closed set ( ) ⊂ . �

Corollar 8.2
Every regular map from a connected3 projective variety to an affine algebraic variety contracts
to one point of . In particular, 𝒪 ( ) = 𝕜 is exhausted by constants.

Proof. Let ⊂ 𝔸 and ∶ → be such a regular map. Composing it with the projections of
to the coordinate axes of 𝔸 reduces the statement to the case = 𝔸 . Composing a regular map

→ 𝔸 with the inclusion 𝔸 ↪ ℙ as the standard affine chart gives a nonsurjective regular
map → ℙ , whose image must be a proper connected Zariski closed subset, that is, one point. �

8.6 Finite projections. A regular morphism of algebraic manifolds ∶ → is called finite if
for every affine chart ⊂ , the preimage = − ( ) is an affine chart on , and the restricted
map ∶ → is a finite morphism of affine algebraic varieties in the sense of n∘ 7.4.3 on p. 94.
It follows from Proposition 7.12 on p. 94 that every finite morphism ∶ → is closed, and
the restriction of to a closed submanifold ⊂ remains a finite morphism. Moreover, if is
irreducible and ⊊ is a proper closed subset, then ( ) ⊊ is a proper closed subset of as
well.
Exercise 8.13. Prove that the composition of finite morphisms is finite.

1See n∘ 8.3.1 on p. 101.
2See the same n∘ 8.3.1 on p. 101.
3That is, indecomposable into disjoint union of two nonempty closed subsets.
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Proposition 8.1
For a proper closed subset  ℙ , a point ∉ , and a hyperplane ∌ , a finite regular
morphism ∶ → is provided by the projection from to .

Proof. Let ⊂ be an affine chart. Fix some homogeneous coordinates ( ∶ ∶ … ∶ ) on
ℙ such that the hyperplane = ( ) is formed by the points = ( ∶ ∶ … ∶ ) ∈ ℙ ,
the chart ⊂ is formed by the points = ( ∶ ∶ … ∶ − ∶ ) ∈ ℙ , and the point

= ( ∶ ∶ … ∶ ). Let be described by homogeneous equations ( ) = in these
coordinates. Since ∉ , the preimage − ( ) is cut out of by the punctured cone ruled by
the projective lines ( ), ∈ , with the punctured point . Every such line is described by the
parametric equation + , ∈ 𝕜, and the cone is an affine algebraic variety isomorphic to
𝔸 = × 𝔸 . The isomorphism maps a point ( , ) ∈ × 𝔸 to the point = + ∈ ℙ laying
on the cone . The intersection ∩ = − ( ) is described in the coordinates ( , ) on by the
equations

( + ) = ( )( ) + ( )( ) − + ⋯ + ( )( ) = (8-8)
and therefore, it is an affine algebraic variety, i.e., an affine chart on . It remains to show that
the coordinate algebra 𝕜[ ∩ ] is integral over 𝕜[ ] = 𝕜[ , , … , − ]. By the construction,
𝕜[ ∩ ] = 𝕜[ , , , … , − ]∕ , where is generated by the polynomials (8-8). This algebra is
generated over 𝕜[ ] by one element . It is enough to check that is integral over 𝕜[ ], i.e., that
the ideal contains a monic polynomial in . Such a polynomial exists if and only if the leading
coefficients ( )( ) of the polynomials (8-8) generate the nonproper ideal in 𝕜[ ]. By the weak
Nullstellensatz, the latter means that the coefficients ( )( ) have no common zeros in . But this
is guaranteed by the condition ∉ . Indeed, if all the coefficients ( )( ) simultaneously vanish
at some point , then the homogenizations of equations (8-8)

( + ) = ( )( ) + ( )( ) − + ⋯ + ( )( ) = ,

which describe the intersection of with the whole unpunctured projective line ( , ), have the
common root ( ∶ ) = ( ∶ ) on this line. This means that ∈ despite the assumption made
in the Proposition. �

Corollar 8.3
Every projective variety admits a regular finite surjection onto projective space.

Proof. Let ⊂ ℙ be a projective variety. Make a finite projection ∶ → from some
point ∈ ℙ ∖ to some hyperplane ⊂ ℙ . If ( ) ≠ , make the second finite projection

∶ ( ) → from some point ∈ ∖ ( ) to some hyperplane ⊂ , etc. �

Corollar 8.4
Every affine algebraic variety admits a regular finite surjection onto affine space.

Proof. Consider an affine variety  𝔸 and embed 𝔸 into ℙ as the standard affine chart
. Write ∞ = ℙ ∖ for the hyperplane at infinity and ⊂ ℙ for the projective closure

of . Pick a point ∈ ∞ ∖ and a hyperplane ∌ . The projection ∶ → from
to looks within the chart as the parallel projection of = ∖ ∞ to the affine hyperplane

∩ = ∖ ∞ in the direction of the vector . By the Proposition 8.1, this parallel projection is a
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finite morphism of affine algebraic varieties. If it is not surjective, we repeat the procedure within
the target hyperplane, as in the proof of Corollary 8.3. �
Exercise 8.14. Check that ∩ ∞ ≠ ∞ for ≠ 𝔸 .

Example 8.7 (Noether’s normali ation)
Consider a polynomial ∈ 𝕜[ , , … , ] of positive degree and write it as

= + + ⋯ + ,

where every is homogeneous of degree . Let = ( ) ⊂ ℙ be the projective of affine
hypersurface = ( ) ⊂ 𝔸 , where 𝔸 is identified with the standard affine chart = in ℙ ,
( ∶ ∶ … ∶ ) are homogeneous coordinates on ℙ , ( , , … , ) are affine coordinates on
𝔸 and = + − + ⋯ + − + . An infinitely far point = ( ∶ ∶ ∶ … ∶ )
does not lie on if and only if ( , , … , ) ≠ . Over an infinite field 𝕜, such a point can
be always chosen. After renumbering the coordinates and rescaling , we can assume that

= ( ∶ ∶ … ∶ − ∶ ) .

Within the affine chart 𝔸 , the projection from to the affine hyperplane = is looking as the
parallel projection ∶ → 𝔸 − along the vector = ( , … , − , − ). It takes

( , , … , ) ↦ ( − , − , … , − − − , ) .

The pullback homomorphism ∗ ∶ 𝕜[ , , … , − ] → 𝕜[ ] = 𝕜[ , , … , ]∕( ) takes

↦ ≝ − ∈ 𝕜[ ] , for ⩽ ⩽ − .

Since the class of in 𝕜[ ] is annihilated by the polynomial

( , , … , ) = ( + , + , … , − + − , ) =
= + − + ⋯ + − +

whose coefficients ∈ 𝕜[ , , … , − ] and the leading one = ( , … , − , ) ∈ 𝕜 is
invertible, the variable and therefore the coordinate algebra 𝕜[ ] is integral over ∗𝕜[𝔸 ].
Thus, the projection ∶ → 𝔸 − is finite, that agrees with Proposition 8.1. This claim is
known as the Noether1 normalization lemma. Over an algebraically closed field 𝕜, the projection

is obviously surjective, because for a given point ∈ 𝔸 − , mapped to by is every point
( + , + , … , − + − , ), where is a root of the degree- polynomial

( + , + , … , − + − , ) ∈ 𝕜[ ] .

Thus, over an algebraically closed field, every affine algebraic hypersurface ( ) ⊂ 𝔸 of positive
degree admits a finite surjective parallel projection onto a hyperplane. Note that this forces

tr deg𝕜[ ] = − . (8-9)

Exercise 8.15. Prove this by direct arguments not using Proposition 7.12.
1In honor of Emmy Noether, who proved it in 1926.



Comments to some exercises

Exrc. 8.2. If ≠ , then , = ∕ = ( ∶ )∕( ∶ ) = , ∕ , (for = we put , = ).
Therefore, ∗ ∶ , ↦ , ∕ , . The inverse to ∗ homomorphism 𝕜 [𝒟 ( , )] → 𝕜 [𝒟 ( , )] acts
by the same rule ( ) ↦ ∕ ( ), , ↦ , ∕ , .

Exrc. 8.3. Every such has a unique basis , , … , projected to , , … , . Write
for the matrix formed by the coordinates of vectors , , … , written in rows. Then

( ) = .
Exrc. 8.5. Note that the elements of × matrix − ( ( )) ⋅ ( ) are the rational functions of
the elements of matrix with the denominators equal to det ( ( )). In particular, they all are
regular in 𝒟 (det ( ( ))).

Exrc. 8.6. This follows from the definition of regular function and Corollary 7.2 on p. 92.
Exrc. 8.9. The definition of can be rewrite as ( ∶ ∶ ) ↦ ( ∶ ∶ ). It makes
clear that is undefined only at the points ( ∶ ∶ ), ( ∶ ∶ ), ( ∶ ∶ ) and takes all values
except for these points.

Exrc. 8.10. Given a homogeneous polynomial ( , , … , ), write ( ) ⊂ ℙ for the set of its
zeros. In the notations of Example 8.1 on p. 98, the intersection ( ) ∩ is described in terms of
the affine coordinates within th chart by the polynomial equation

( , , … , , − , , , + , … , , ) = .

Exrc. 8.12. Use the Segre embedding ℙ × ℙ × ⋯ × ℙ ↪ ℙ described in n∘ 4.1.2 on p. 40
and analyzed in more details in Example 4.10 on p. 58.

Exrc. 8.13. If ⊂ and ⊃ are two integral extensions of commutative rings, then the extension
⊂ is integral as well by Proposition 6.1 on p. 73.
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