
§5 Grassmannian varieties in more details

5.1 The Plücker quadric and grassmannianGr(2,4). Let us fix a vector space of dimension .
The grassmannian Gr( , ) = Gr( , ) parameterizes the vector subspaces ⊂ of dimension ,
or equivalently, the lines ℓ ⊂ ℙ = ℙ( ). The Plücker embedding

𝔲 ∶ Gr( , ) ↪ ℙ = ℙ( ) , ↦ , ( ) ↦ ∧ (5-1)

sends every -dimensional subspace ⊂ to the -dimensional subspace ⊂ , or equiva-
lently, every line ( ) ⊂ ℙ( ) to the point ∧ ∈ ℙ( ). It assigns the bijection between the
grassmannian Gr( , ) and the Plücker quadric1

≝ { ∈ | ∧ = }

which consists of all decomposable grassmannian quadratic forms = ∧ , , ∈ , see Exam-
ple 4.9 on p. 58.

Let us fix a basis , , , in , the monomial basis ≝ ∧ in , and write for
the homogeneous coordinates in ℙ = ℙ( ) with respect to the latter basis. The computation

(�∑
<

⋅ ∧ ) � ∧ (�∑
<

⋅ ∧ )� = ( − + ) ⋅ ∧ ∧ ∧

shows that is described by the non-degenerated quadratic equation = + .
Exercise 5.1. Check that the Plücker embedding (5-1) takes the subspace spanned by vectors

= ∑ , = ∑ to the point with coordinates = − , that is, sends a matrix

( ) to the collection of its six × -minors = det ( ) .
In coordinate-free terms, the Plücker quadric is described as follows. There exists a unique up

to proportionality bilinear form ̃ on defined by prescription

∀ , ∈ ∧ = ̃( , ) ⋅ , (5-2)

where ∈ ≃ 𝕜 is an arbitrary non zero vector1. This form is symmetric, because ∧ =
= ∧ for even grassmannian polynomials. Obviously, = ( ) for the quadratic form

( ) = ̃( , ) corresponding to ̃.
Lemma 5.1
Two lines ℓ , ℓ ⊂ ℙ are intersecting if and only if ̃(𝔲(ℓ ), 𝔲(ℓ )) = in ℙ .

Proof. Let ℓ = ℙ( ), ℓ = ℙ( ). If ∩ = , then = ⊕ and we can choose a basis
, , , ∈ such that ℓ = ( ), ℓ = ( ). Then 𝔲(ℓ ) ∧ 𝔲(ℓ ) = ∧ ∧ ∧ ≠ .

If ℓ = ( ), ℓ = ( ) are intersecting in , then 𝔲(ℓ ) ∧ 𝔲(ℓ ) = ∧ ∧ ∧ = . �

Remark 5.1. The injectivity of (5-1) becomes obvious2 after Lemma 5.1. Indeed, for any two lines
ℓ ≠ ℓ on ℙ there exists a third line ℓ which intersects ℓ and does not intersect ℓ . Then
𝔲(ℓ ) ∧ 𝔲(ℓ) = and 𝔲(ℓ ) ∧ 𝔲(ℓ) ≠ . This forces 𝔲(ℓ ) ≠ 𝔲(ℓ ).

1See formula (4-47) on p. 58.
1Since dim = , such a vector is unique up to proportionality.
2Compare with Exercise 4.27 on p. 58.
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5.1. The Plücker quadric and grassmannian Gr( , ) 61

Corollar 5.1
For every point = 𝔲(ℓ) ∈ , the intersection ∩ in ℙ consists of all points 𝔲(ℓ′) such that
ℓ ∩ ℓ′ ≠ ∅ in ℙ .

Proof. This follows from Lemma 5.1 and Proposition 2.2 on p. 18. �

5.1.1 Nets and pencils of lines in ℙ . A family of lines on ℙ is called a net if the Plücker
embedding sends it to a plane ⊂ ⊂ ℙ . Every plane ⊂ is spanned by a triple of non
collinear points = 𝔲(ℓ ), = , , , and lies in the intersection of tangent spaces to at these
points: ⊂ ∩ ∩ ∩ . It follows from the Lemma 5.1 and Corollary 5.1 that the
corresponding net of lines in ℙ consists of all lines intersecting three given pairwise intersecting
lines ℓ , ℓ , ℓ . Since three mutually intersecting lines have to be either concurrent or coplanar,
there are exactly two different types of line nets in ℙ :

-net consists of lines passing through a given point ∈ ℙ and corresponds to -plane ( ) ⊂
spanned by Plücker’s images of three non-coplanar lines passing through

-net consists of lines laying in a given plane ∈ ℙ and corresponds to -plane ( ) ⊂
spanned by Plücker’s images of three non-concurrent lines laying in .

Any two planes of the same type have exactly one intersection point:

( ) ∩ ( ) = 𝔲 ( ∩ ) , ( ) ∩ ( ) = 𝔲 ( ( ) ) .

Two planes of different types ( ), ( ) are either not intersecting (if ∉ ) or intersecting
along a line (if ∈ ). In the latter case the intersection line depicts the pencil of lines in ℙ
passing through and laying in .
Exercise 5.2. Show that there are no other pencils of lines in ℙ , i.e., every line laying on ⊂ ℙ
has the form ( ) ∩ ( ) for some ∈ ⊂ ℙ .

Exercise 5.3. Convince yourself that the assignment ↦ Ann establishes the bijection
Gr( , ) ⥲ Gr( , ∗) sending -planes to -planes and vice versa.
5.1.2 Cell decomposition of 𝑷. Let us fix a point ∈ and a hyperplane ≃ ℙ laying

inside ≃ ℙ and complementary to within this ℙ . The intersection = ∩ is the
simple cone with vertex over a smooth quadric = ∩ , which can be thought of as the Segre
quadric in ℙ = . Fix a point ′ ∈ and write , for the planes spanned by and two lines
laying on and passing through ′. Associated with these data is the following stratification of the
Plücker quadric by closed subvarieties shown on fig. 5⋄1 on p. 62:
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For every stratum of this stratification, the complement to the union of all strata contained in
is naturally identified with an affine space. This leads to the following decomposition of Gr( , )
in disjoint union of affine spaces:

Gr( , ) = 𝔸 ⊔ 𝔸 ⊔
⎛
⎜
⎜
⎝

𝔸
⊔
𝔸

⎞
⎟
⎟
⎠

⊔ 𝔸 ⊔ 𝔸 .

The leftmost 𝔸 is the point . Then goes 𝔸 , which is the complement to within the projective
line ( ′) = ∩ . Then go two affine planes 𝔸 , the complements to ( ′) within the projective
planes and respectively. Then goes 𝔸 , which is the complement to ∪ within the cone

= ∩ , which is the linear join of and . This complement is isomorphic to the direct
product of 𝔸 , which is the cone generator punctured at the vertex of cone, and 𝔸 = ∖ ′ .
The rightmost piece 𝔸 = ∖ . The identifications ∖ ′ = 𝔸 and ∖ ′ = 𝔸 made on the
last two steps are based on the Lemma 5.2 following below.

p′

p ̸∈ H

G ⊂ H

H ≃ P3

πα

πβ

Fig. 5⋄1. The cone = ∩ viewed within ℙ = .

Lemma 5.2
For every smooth quadric ⊂ ℙ , point ∈ , and hyperplane ∌ , the projection ∶ →
from to establishes a bijection between ∖ and 𝔸 − = ∖ .

Proof. Every non-tangent line passing through intersects in exactly one point other than .
All these lines stay in bijection with the points of ∖ ≃ 𝔸 − . �
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Exercise 5.4. If you have some experience in CW-topology, show that the integer homology
groups of complex grassmannian Gr( , ) are

(Gr( ,ℂ ), ℤ) =
⎧⎪
⎨
⎪⎩

for odd ⩽ and all >
ℤ for = , , ,
ℤ⊕ ℤ for =

�

Try to compute the integer homologies (Gr( ,ℝ ), ℤ) of the real grassmannian Gr( , ).
5.1.3 Lagrangian grassmannian LGr(2,4) and lines on a smooth quadric in ℙ . Let a

vector space of dimension be equipped with a non-degenerated alternating bilinear form .
A line ℓ = ( ) ⊂ ℙ( ) is called lagrangian if ( , ) = for all , ∈ ℓ, or equivalently,
if ( , ) = . The set of all lagrangian lines is called the lagrangian grassmannian and denoted
by LGr( , ) ⊂ Gr( , ). Let us show that the Plücker embedding sends LGr( , ) to a smooth
hyperplane section of the Plücker quadric, that is, to a smooth quadric in ℙ .

Associated with is the linear form ′ ∶ → 𝕜, ∧ ↦ ( , ). Let us fix a non-zero vector
∈ . Since the bilinear form ̃ on defined in formula (5-2) on p. 60 is non-degenerate, its

correlation map ̂∶ ⥲ ( )
∗ is an isomorphism. Hence, there exists a unique grassmannian

quadratic form = ̂− ( ′) ∈ such that

∀ , ∈ ∧ ∧ = ( , ) ⋅ . (5-4)

Write = Ann ′ ⊂ for the orthogonal complement to with respect to the Plücker quadratic
form . The projectivization = ℙ( ) ≃ ℙ ⊂ ℙ is the polar hyperplane of with respect to the
Plücker quadric ⊂ ℙ( ).
Exercise 5.5. Verify that ∉ .

Hence, the intersection = ∩ is a smooth quadric within ℙ = . The points of this quadric
stay in bijection with the lagrangian lines in ℙ( ), because the formulas (5-4), (5-2) say together
that a line ( ) ⊂ ℙ is lagrangian if and only if ̃( , ∧ ) = . Thus, LGr( , ) = is a smooth
quadric in ℙ = .

It follows from the general theory developed in n∘ 2.6 on p. 24 that does not contain planes
but every point ∈ is the vertex of cone ∩ , the linear join of with a smooth conic in a
plane complementary to within ≃ ℙ .

Definition 5.1 (the Fano variet of a projective variet )
The set of lines laying on a projective algebraic variety is called the Fano variety of and denoted
by ( ).

Proposition 5.1
For every point ∈ ℙ( ), the lagrangian lines ℓ ⊂ ℙ( ) passing through form a pencil. Sending
to this pencil assigns the bijection ℙ( ) ⥲ ( �LGr( , )) �.

Proof. Every pencil of lines in ℙ = ℙ( ) is mapped by the Plücker embedding to a line ⊂ ,
which has the form1 = ∩ ( ) for some point and plane in ℙ such that ∈ . In other
words, consists of all lines passing through and laying in . For ⊂ = ∩ all these lines

1See n∘ 5.1.1, especially Exercise 5.2 on p. 61.
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are lagrangian. On the other hand, a line ( ) ⊂ ℙ( ) is lagrangian if and only if ( , ) = .
Hence, every lagrangian line passing through lies in the orthogonal plane to with respect to
the form and therefore, belongs to the pencil . This proves the first statement. The second is
obvious from the discussion preceding the proposition. �

5.2 The homogeneous, Plücker’s, and affine coordinates on Gr(𝒌,𝒎). The general grassman-
nian Gr( , ), which parameterizes the vector subspaces of dimension in = 𝕜 , is a straightfor-
ward generalization of the projective space ℙ − = Gr( , ) attached to . If a basis , , … ,
in is fixed, then a vector subspace ⊂ with a basis = , , … , can be described by
the × matrix formed by the coordinate rows of vectors in the chosen basis of . Every
other basis , , … , in has the form ( , , … , ) = ( , , … , ) ⋅ , where

∈ GL (𝕜), and leads to the matrix = .
Exercise 5.6. Check this.

Thus, two × matrices , of rank correspond to the same subspace ⊂ if and only
if = for some × matrix ∈ GL (𝕜). For = , this agrees with the description of
ℙ − = Gr( , ) as the set of nonzero rows ( , , … , ) ∈ 𝕜 = Mat × considered up to
multiplication by nonzero constants ∈ 𝕜∗ = GL (𝕜). Thus, the matrix ∈ Mat × , formed by
coordinate rows of some basis vectors , , … , ∈ and considered up to the left multiplication
by matrices ∈ GL , is the direct analog of homogeneous coordinates on the projective space.

The Plücker embedding 𝔲 ∶ Gr( , ) ↪ ℙ( ) takes a subspace ⊂ of dimension to
the subspace ⊂ of dimension . For every basis , , … , in , the grassmannian
monomial ∧ ∧ … ∧ spans 𝔲( ).
Exercise 5.7 (Plücker coordinates). Verify that for every = ( , , … , ), the coefficient

in the expansion ∧ ∧…∧ = ∑ equals the × minor situated in the columns
, , … , of matrix .

Thus, the ( ) homogeneous coordinates of the point 𝔲( ) ∈ ℙ( ) with respect to the basis formed
by the grassmannian monomials are the determinants = det of × submatrices ⊂ .
They called the Plücker coordinates of the subspace ⊂ . Two subspaces , ⊂ of dimension
coincide if and only if their Plücker coordinates are proportional.
Exercise 5.8. Is there a rational × matrix with minors a) , , , , , b) , , , , , ?
If such matrices exist, write some of them explicitly. If not, explain why.
5.2.1 Affine charts. For every subspace ⊂ of codimension , the set

𝒰 ≝ { ⊂ | dim = , ∩ = }

is called the affine chart provided by on the grassmannian Gr( , ). For every ∈ 𝒰 , the set
𝒰 is naturally identified with the affinization 𝔸( �Hom( , )) � of the vector space of linear maps

∶ → as follows. We have the direct sum decomposition = ⊕ and 𝒰 consists of all
those subspaces ⊂ isomorphically projected onto along . Thus, every ∈ 𝒰 is the graph
of linear map ∶ → sending a vector ∈ to the unique vector ∈ such that + ∈ ,
and vice versa, for every linear map ∶ → , its graph = { + ( ) | ∈ } is a linear
subspace in isomorphically projected onto along .

For every ∈ 𝒰 , the projection ↠ along assigns the isomorphism ∶ ∕ ⥲ .
It provides us with the linear isomorphism ∶ Hom( , ∕ ) ⥲ Hom( , ), ↦ ∘ , which
allows to consider all affine charts 𝒰 containing a given point ∈ Gr( , ) as affine spaces over
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the same vector space Hom( , ∕ ) independent on . Thus, locally, in a neighborhood of every
point , the grassmannian Gr( , ) looks as an affine space over the vector space Hom( , ∕ ) of
dimension × ( − ). This vector space is called the tangent space to the grassmannian Gr( , )
at the point and is denoted by 𝒯 Gr( , ).

Example 5.1 (affine charts on ℙ − = Gr( , ) revisited)
Every codimension subspace ⊂ has the form = Ann for a non-zero covector ∈ ∗

uniquely up to proportionality determined by . Defined in n∘ 1.2 on p. 5 were affine charts
on ℙ − = ℙ( ). For all such that Ann = , the charts consist of the same points, the
dimension subspaces 𝕜 ⋅ ⊂ such that ∉ . Exactly the same subspaces form the chart 𝒰 on
Gr( , ). This chart is an affine space associated with the vector space Hom(𝕜, ) ≃ . A particular
choice of dimension subspace 𝕜 ⋅ ∈ 𝒰 fixes the origin in this affine space. Under this choice,
every dimension subspace 𝕜 ⋅ laying in 𝒰 , i.e., such that ( ) ≠ , can be identified with the
linear map ∶ 𝕜 ⋅ → Ann = , ↦ ⋅ ( )∕ ( ) − . Note that this map depends only on
the subspaces 𝕜 ⋅ , 𝕜 ⋅ , and in but not on the choice of ∈ 𝕜 ⋅ , ∈ 𝕜 ⋅ , and ∈ Ann .

5.2.2 The standard affine charts on Gr(𝒌,𝒎). For every collection of increasing indexes
⩽ < < ⋯ < ⩽ , write , ̂ ⊂ 𝕜 for the complementary subspaces spanned by

the basis vectors , ∈ , and , ∉ , respectively. The affine chart 𝒰 ̂ , which consists of all
dimension subspaces ⊂ 𝕜 isomorphically projected onto along ̂, is called the standard
-chart on grassmannian Gr( , ) and denoted by 𝒰 .

For every subspace ⊂ laying in the chart 𝒰 , write ( ) = ( ), ( ), … , ( ) for the basis
of projected along ̂ to the basis , , … , of . The matrix ( ) ≝ ( ) , formed by the
coordinate rows of these vectors, has the identity × submatrix in the columns , , … , . We
conclude that among the matrices representing a subspace ∈ 𝒰 , there exists the unique
matrix having the identity submatrix in -columns. We write ( )( ) for this matrix and use the

( − ) elements staying outside the -columns of ( )( ) as the standard affine coordinates of
in the chart 𝒰 .

Clearly, a point ∈ Gr( , ) represented by a matrix = ∈ Mat × (𝕜) lies in 𝒰 if
and only if the × submatrix ⊂ situated in -columns of is invertible. In this case,

( )( ) = − . Thus, the standard chart 𝒰 consists of those whose th Plücker coordinate is
not zero. The matrices ( ) = ( )( ) and ( ) = ( )( ) producing the local affine coordinates of
a point ∈ 𝒰 ∩ 𝒰 in the standard charts 𝒰 , 𝒰 are related as ( ) = ( ( ))− ( ). Hence, the
standard affine coordinates of the same subspace ⊂ in different charts are rational functions of
each other.
Exercise 5.9. Make it sure that the standard affine charts and local affine coordinates on

Gr( , ) = ℙ − are exactly those introduced in Example 1.2 on p. 8.

Exercise 5.10. If you had deal with differential (respectively, analytic2) geometry, check that
real (respectively complex) grassmannians are smooth (respectively holomorphic) manifolds.

5.3 The cell decomposition for Gr(𝒌,𝒎). The Gaussian elimination method shows that every
subspace ⊂ admits a unique basis = , , … , with the reduced echelon matrix , i.e.,
the leftmost nonzero element in every row of stays strictly to the right of such element in the

2Also known as holomorphic.
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previous row, equals , and is the only nonzero element of its column.
Exercise 5.11. Convince yourself that the rows of different reduced echelon × matrices span
different subspaces in 𝕜 .

Thus, there exist a bijection between Gr( , ) and the set of reduced echelon × matrices of
rank . The latter splits in disjoint union of affine spaces as follows. Write = , , … , for
successive numbers of those columns containing the starting units of rows in a reduced echelon
matrix , and call this increasing sequence of integers the shape of . Every reduced echelon ×
matrix of shape contains the identity submatrix in the -columns, and has exactly

( − ) − ( − ) − ( − ) − ⋯ − ( − ) = dim Gr( , ) − ∑
=

( − )

free cells which may contain arbitrary elements of 𝕜. Thus, these matrices form an affine space of
codimension ∑ = ( − ) in Gr( , ). It is denoted by and called an affine Schubert cell. The
whole grassmannian splits in disjoint union of ( ) such cells: Gr( , ) = ⨆ .

5.3.1 Young diagram notations. Besides the strictly increasing sequences of integers, the
partitions are also commonly used for indexing the Schubert cells. A partition is a non-increasing
sequence of non-negative integers ⩾ ⩾ ⋯ ⩾ ⩾ visualized as the Young diagram, the
pile of horizontal cellular strips of lengths , , … , aligned to the left in the non-increasing
top-down order. For example, the partition ( , , , ) has the Young diagram

(5-5)

The total number of cells in a diagram is denoted by | | ≝ ∑ and called the weight of . Thus,
the partitions of weight enumerate the ways to break a set of mutually elements in a union of
disjoint subsets. The total number of non-empty parts is called the height of partition and denoted
by ( ) = max( | > ). The cardinality of biggest part is called the width of the partition.
For example, the diagram (5-5) has weight , height , and width .

We say that a reduced echelon matrix has the shape for some partition = , , … ,
if for every = , , … , , the starting unit in the th from the bottom row of stays in the
th cell to the right of the leftmost possible position. This means that + − = − for every
= + − = , , … , . Note that the codimension of the affine Schubert cell equals the

weight | | of Young diagram .
Exercise 5.12. Convince yourself that the prescription , , … , ↦ , , … , such that

+ − = − for all ⩽ ⩽ establishes a bijection between the sequences of strictly
increasing integers in range [ , ] and the Young diagrams ot height ⩽ and width ⩽ − .

For example, the affine Schubert cell ⊂ Gr( , ) corresponding to the diagram (5-5) consists
of subspaces ⊂ 𝕜 represented by reduced echelon matrices of the shape

⎛
⎜
⎜
⎜
⎝

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

⎞
⎟
⎟
⎟
⎠

.

Colored in red are the leftmost possible positions for the starting units of reduced echelon ×
matrix. Colored in blue are the actual starting units. Being read bottom-up, they are sifted by , ,
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, and cell to the right of red cell. The grassmannian Gr( , ) has dimension , the codimension
of ≃ 𝔸 equals = + + + .

The zero partition ( , , , ) has empty Young diagram meaning that the starting units stay
in the leftmost possible positions. It describes the largest Schubert cell of dimension which
consists of subspaces ⊂ 𝕜 represented by matrices of the shape

⎛
⎜
⎜
⎜
⎝

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟
⎟
⎟
⎠

Thus, the cell coincides with the standard affine chart 𝒰 ⊂ Gr( , ).
The maximal possible for Gr( , ) Young diagram ( , , , ) exhausts the whole rectangle

and describes one point cell, the coordinate subspace , , , ⊂ 𝕜 spanned by the rows of matrix

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

5.3.2 The closed Schubert cycles. We write ⊆ if the diagram is contained in the
diagram sharing the same upper left corner. Consider a pair of such diagrams and a subspace

⊂ 𝕜 such that ∈ in Gr( , ). Let be the reduced echelon matrix of , the reduced
echelon matrix of shape corresponding to the origin of affine cell , i.e., all element of but
the starting units of rows equal zero. For every = ( ∶ ) ∈ ℙ = ℙ(𝕜 ) except for = ( ∶ ),
the reduced echelon form of matrix = + has the shape but ∞ = is of shape .
The subspace ⊂ 𝕜 spanned by the rows of matrix draws a rationally parameterized curve
in Gr( , ) ⊂ ℙ( 𝕜 ) as runs through ℙ . All points of this curve but ∞ = ∈ belong
to the affine Schubert cell . We conclude that the affine cell lies in the closure of for all

⊇ . For every Young diagram contained in the rectangle ×( − ), the union = ⨆ ⊇
is called the (closed) Schubert cycle of grassmannian Gr( , ).

Write ⩾ ⊂ 𝕜 for the coordinate subspace spanned by , + , … , , and < for the
complementary coordinate subspace. Then, in -notations, consists of those subspaces ⊂ 𝕜
mapped by the projection ∶ 𝕜 ↠ < along ⩾ to a subspace of dimension ⩽ − for every

⩽ ⩽ , or equivalently, of those intersecting ker = ⩾ in a subspace of dimension at
least + − . Thus, = { ⊂ 𝕜 | dim( ∩ ⩾ ) ⩾ + − for = , … , }. This is translated
in -notations as = { ⊂ 𝕜 | dim( ∩ ⩾ + − + ) ⩾ for = , … , }.
Exercise 5.13. Convince yourself that for 𝕜 = ℝ,ℂ, the Schubert cycles are closed submanifolds
of the grassmannian Gr( , ).

Example 5.2 (the Schubert cells on Gr( , ))
In ℙ = ℙ(𝕜 ), consider the point = ( ∶ ∶ ∶ ) and plane = ( ). Then the strata
of stratification from formula (5-3) on p. 61 are the Plücker images of Schubert cycles on Gr( , ).
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Namely, in the notations of n∘ 5.1.2, the -plane ( ) on the Plücker quadric ⊂ ℙ = ℙ( 𝕜 )
is the Plücker image of Schubert cycle , i.e., the closure of affine cell formed by reduced
echelon matrices ( ∗ ∗ ). The -plane ( ) is the cycle , the closure of affine cell formed
by matrices ( ∗

∗ ). Their intersection ( ) ∩ ( ) = ( ′) equals , the closure ⊔
of the cell formed by matrices of shape ( ∗ ). The dimension zero cycle = is the
point = ( ∶ ∶ ∶ ∶ ∶ ) ∈ ℙ = ℙ( 𝕜 ), the Plücker image of matrix ( ). The
cone ∩ = is the closure of , the affine cell formed by matrices ( ∗ ∗

∗ ). The biggest
cycle is the whole Plücker quadric .

Exercise 5.14. Check all these statements carefully.
5.3.3 The homology of complex grassmannians and Schubert calculus. Write

( , ) ≝ ⨁ ( �Gr( ,ℂ ),ℤ) �

for the total integer homology group of the complex grassmannian considered as a (real) topological
manifold. The (open) affine Schubert cells provide Gr( , ) with the cell decomposition which
consists of even dimensional cells only. Hence, all boundary maps in the chain complex constructed
by means of this chain decomposition vanish. Therefore, the closed Schubert cycles = form
a basis of ( , ) = ⨁ over ℤ. E.g., for the Plck̈er quadric = Gr( ,ℂ ) ⊂ ℙ(ℂ ) of real
dimension , we have = = = = ℤ, = ℤ ⊕ ℤ, and all the homology of odd
dimension vanishes. This agrees with Exercise 5.4 on p. 63.

Topological intersection of cycles provides ( , ) with the structure of commutative ring
closely connected with the ring of symmetric polynomials in variables, which is the poly-
nomial ring = ℤ[ , , … , ] ⊂ ℤ[ , , … , ] generated by the elementary symmetric
polynomials1 ( , , … , ). Namely, there is the surjective homomorphism of commutative
rings ↠ ( , ) sending the Schur polynomial2 ( , , … , ) to the Schubert cycle . The
kernel ideal of this homomorphism is spanned by complete symmetric polynomials0 − + , … ,
of degrees in range [ − + , ]. All known0 proofs of these statements are indirect and besides the

1Recall that is sum of all multilinear monomials of total degree in , , … , .
2The Schur polynomial ∈ ℤ[ , , … , ] is defined either as the quotient of determinant

= det( + − ) = det

⎛
⎜
⎜
⎜
⎜
⎜
⎝

+ − + − ⋯ + −

+ − + − ⋯ + −

⋮ ⋮ ⋯ ⋮
− + − + ⋯ − +

⋯

⎞
⎟
⎟
⎟
⎟
⎟
⎠

by the Vandermonde determinant ,…, or as the sum of all monomials in , , … , obtained as follows:
fill the cells of diagram by (possibly repeated) variables , , … , in such a way that indexes strictly
increase top-down in columns and non-strictly increase from left to right in rows, then multiply them alto-
gether to one monomial of total degree | |. E.g, for the one-column diagram of height , we get , ,…, = .
The coincidence of two descriptions is non-trivial and known as the Jacobi – Trudi identity. For details, see
W. Fulton, Young Tableaux with Applications to Representation Theory and Geometry, CUP, 1997.

0Recall that the complete symmetric polynomial equals the sum of all degree monomials in
, , … , at all.
0At least, to me.
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geometry of grassmannians, use sophisticated combinatorics of symmetric functions. The geometric
part of the proof establishes two basic intersection rules:

1) The intersection of cycles , of complementary codimensions | |+| | = ( − ) is not
zero if and only if the diagrams , are complementary0, and in this case, the intersection
consists of one point, that is, equals ,…, .

2) The Pieri rules: for any integer and diagram , ( , ,…, ) = ∑ and ( ,…,⏟ ) = ∑ ,
where , run through the Young diagrams obtained by adding cells to in such a way
that all added cells appear in different rows of and in different columns of . If there are
no such diagrams, the intersection is zero.

The proofs can be found, e.g., in: P. Griffits, J. Harris, Principles of Algebraic Geometry, I. It follows
from the determinantal definition of Schubert polynomials that they form a basis over ℤ in the
additive group of symmetric polynomials, because the alternating sums

= det( + − ) = ∑
∈

sgn( ) + −
( )

+ −
( ) … ( )

obviously form a basis in the additive group of alternating polynomials in , , … , , and di-
viding by the Vandermonde determinant maps this group isomorphically to the additive group of
symmetric polynomials.
Exercise 5.15. Show that every alternating polynomial in , , … , is divisible by the Van-
dermonde determinant in the polynomial ring ℤ[ , , … , ].

The combinatorial part of the proof verifies that the multiplication of Schur polynomials also sat-
isfies the Pieri rules, which are particular cases of the Littlewood –Richardson rule for multiplying
arbitrary Schur polynomials0. It is easy to see that the Pieri rules completely determine the multi-
plicative structure in the both rings , ( , ). This proves that the map → ( , ), ↦ ,
is a well defined surjective homomorphism of rings. The description of its kernel comes from the
intersection rule ( ) for the Schubert cycles of complementary dimensions. The details of this story,
known as the Schubert calculus, can be found in the cited book of P. Griffits and J. Harris and in the
Intersection Theory book of W. Fulton.
Example 5.3 (the intersection theor on Gr( , ))
As we have seen in Example 5.2, the Schubert cycles on Gr( , ) can be realized as

(ℓ) = {ℓ′ ⊂ ℙ | ℓ ∩ ℓ′ ≠ ∅} for a line ℓ ⊂ ℙ ,
( ) = {ℓ′ ⊂ ℙ | ℓ′ ∋ } for a point ∈ ℙ ,
( ) = {ℓ′ ⊂ ℙ | ℓ′ ⊂ } for a plane ⊂ ℙ ,
( , ) = ( ) ∩ ( ) for ∈ ⊂ ℙ ,
(ℓ) = {ℓ}, a line ℓ ⊂ ℙ considered as a point of Gr( , ).

Certainly, ℓ = for + + + ℓ = codim + codim ℓ > . We have seen in Example 5.2
that ( ) ∩ ( ) = (( )), ( ) ∩ ( ) = ( ∩ ), whereas for ∉ ,

0That is, can be fitted together without holes and overlaps to assemble × ( − ) rectangle.
0See already cited W. Fulton’s book on Young diagrams, or Sec. 4.5 in: A.L.Gorodentsev, Algebra II.

Textbook for Students of Mathematics, Springer, 2017. The Pieri rules can be proven independently on the
Littlewood –Richardson rule by formal algebraic manipulations with determinants, see, e.g., Section 3.6 of
loc. cit.
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( ) ∩ ( ) = ∅. By the same geometric reasons, for a line ℓ and a plane intersecting at
a point , we have (ℓ) ∩ ( ) = ( , ). Dually, for a line ℓ and a point ∉ ℓ, we have

(ℓ) ∩ ( ) = ( , ), where is the plane passing trough and ℓ. Similarly, for a point
in a plane , and a line ℓ intersecting in a point ≠ , we get (ℓ) ∩ ( , ) = (( , )).
For a generic choice of lines ℓ , ℓ ⊂ ℙ the intersection (ℓ ) ∩ (ℓ ), which consists of all
lines intersecting both ℓ , ℓ , is the Segre quadric laying in ℙ = 𝔲(ℓ ) ∩ 𝔲(ℓ ) as it was shown in
fig. 5⋄1 on p. 62. However, when the lines ℓ , ℓ are intersecting but still different, the intersection

(ℓ )∩ (ℓ ) splits in the union of the -net ( ) centered at the intersection point = ℓ ∩ℓ
and the -net ( ), where is the plane containing ℓ , ℓ . Since the integer homology classes of
all cycles just mentioned are not changed under continuous moving of the points, lines, and planes
in ℙ used to construct the realizations of these cycles within Gr( , ), we conclude that nonzero
products of the Schubert cycles in Gr( , ) are exhausted by

= + , = = , = = = ,

and = for all Young diagrams ( ) went in the square × . As a byproduct, we get a
«topological» solution of Exercise 2.14 on p. 24: for a generic choice of mutually non-intersecting
lines inℙ , the set of lines intersecting them all represents the homology class of topological fourfold
self-intersection = ( + ) = + = , that is, consists of two lines.



Comments to some exercises

Exrc. 5.2. (Comp. with general theory from n∘ 2.6 on p. 24.) The cone = ∩ consist of all lines
passing through and laying on . On the other hand, it consists of all lines joining its vertex with
a smooth quadric = ∩ cut out of by any 3-dimensional hyperplane ⊂ complementary
to inside ≃ ℙ . Thus, any line on passing through has a form ( ′) = ∩ , where

′ ∈ and , are two planes spanned by and two lines laying on the Segre quadric and
passing through ′ (see fig. 5⋄1 on p. 62).

Exrc. 5.4. See n∘ 5.3.3 on p. 68.
Exrc. 5.5. If ∈ , then = and = 𝔲(ℓ) for some lagrangian line ℓ ⊂ ℙ( ). Then all lines
in ℙ intersecting ℓ have to be lagrangian as well. This forces to be degenerated.

Exrc. 5.6. The relations = ⋅ , = ⋅ , = ⋅ , where , , are the row matrices
whose elements are the corresponding basis vectors, force = .

Exrc. 5.7. See Example 4.3 on p. 47.
Exrc. 5.8. Use the Plücker relation (4-47) on 58 and appropriate congruence reasons avoiding the
complete enumeration of matchings between and the given numbers.

Exrc. 5.15. Since an alternating polynomial, considered as a polynomial in with coefficients in
the polynomial ring on the remaining variables, has the root = , it is divisible by ( − ) for
all ≠ .
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