
§4 Tensor Guide

4.1 Tensor products and Segre varieties. Let , , … , and be vector spaces of dimen-
sions , , … , and over a field 𝕜. A map ∶ × × ⋯ × → is called multilinear,
if it is linear in each argument when all the other are fixed:

( … , ′ + ″ , …) = (… , ′ , …) + (… , ″ , …) .
Multilinear maps × × ⋯ × → form a vector space denoted Hom( , , … , ; ) . As
soon some bases , , … , ∈ and ( ), ( ), … , ( ) ∈ , ⩽ ⩽ , are fixed, every multilin-
ear map ∈ Hom( , , … , ; ) can be uniquely described by the values on all collections of
basis vectors:

( � ( ) , ( ) , … , ( ) ) � = ∑
( , ,…, ) ⋅ ∈ ,

that is, by ⋅ ∏ constants ( , ,…, ) ∈ 𝕜, which can be organized in the matrix of dimension
( + ) and size1 × × × ⋯ × . The multilinear map corresponding to such a matrix
sends a collection of vectors , , … , , where = ∑ =

( ) ( ) ∈ for ⩽ ⩽ , to the
vector

( , , … , ) = ∑
=

( � ∑
, ,…,

( , ,…, ) ⋅ ( ) ⋅ ( ) ⋅ ⋯ ⋅ ( )
)� ⋅ ∈ .

Thus, dim Hom( , , … , ; ) = dim ⋅ ∏ dim .
Exercise 4.1. Check that a) a collection of vectors , , … , ∈ × × ⋯ ×
does not contain the zero vector if and only if there exists a multilinear map such that

( , , … , ) ≠ b) for a linear ∶ → and multilinear ∶ × × ⋯ × → ,
the composition ∘ ∶ × × ⋯ × → is multilinear.
4.1.1 Tensor product of vector spaces. Given a multilinear map

∶ × × ⋯ × → (4-1)
and a vector space , composing with linear maps ∶ → assigns the map

Hom( , ) ↦ ∘−−−−−−−→ Hom( , , … , ; ) (4-2)
which is obviously linear in .
Definition 4.1
A multilinear map (4-1) is called universal if for any vector space , the linear map (4-2) is an
isomorphism. In the expanded form, this means that for every vector space and multilinear map

∶ × × ⋯ × → , there exist a unique linear operator ∶ → such that = ∘ ,
i.e., two solid multilinear arrows in the diagram

��

× × ⋯ ×

77

''

1The usual matrices of dimension 2 and size × describe linear maps → .
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are uniquely completed to a commutative triangle by the dashed linear arrow.

Lemma 4.1
For every two universal multilinear maps

∶ × × ⋯ × → , ∶ × × ⋯ × → ,

there exists a unique linear isomorphism ∶ ⥲ such that = .

Proof. By the universal properties of , , there exists a unique pair of linear maps ∶ →
and ∶ → that fit in the commutative diagram

Id
  

Id
~~

~~

× × ⋯ ×

jj 44

tt **

oo //

  

Since the factorizations = ∘ , = ∘ are unique and hold for = Id , = Id , we
conclude that = Id and = Id . �

Lemma 4.2
Given a basis ( ), ( ), … , ( ) ∈ for ⩽ ⩽ , write ⊗ ⊗ ⋯ ⊗ for the vector space
with basis formed by ∏ formal expressions

( ) ⊗ ( ) ⊗ … ⊗ ( ) , ⩽ ⩽ . (4-3)

Then the multilinear map ∶ × × ⋯ × → ⊗ ⊗ ⋯ ⊗ sending every collection
of basis vectors ( � ( ), ( ), … , ( )) � ∈ × × ⋯ × to the expression (4-3) is universal.

Proof. For a multilinear ∶ × × ⋯ × → and linear ∶ ⊗ ⊗ ⋯ ⊗ → ,
the identity = ∘ mans exactly that ( � ( ) ⊗ ( ) ⊗ … ⊗ ( )) � = ( � ( ), ( ), … , ( )) � for all
collections of basis vectors. �

Definition 4.2
The universal multilinear map (4-1) is denoted by

∶ × × ⋯ × → ⊗ ⊗ ⋯ ⊗ , ( , , … , ) ↦ ⊗ ⊗ ⋯ ⊗ (4-4)

and called tensor multiplication. The target space ⊗ ⊗ ⋯ ⊗ is called the tensor product of
spaces , , … , and its elements are called tensors.

4.1.2 Decomposable tensors and Segre varieties. The image of tensor multiplication (4-4)
consists of the tensor products ⊗ ⊗ ⋯ ⊗ called tensor monomials or decomposable tensors.
They do not form a vector space, because the map (4-4) is not linear but multilinear. However, the
linear span of decomposable tensors is the whole space ⊗ ⊗ ⋯ ⊗ . Over an infinite ground
field, a random tensor is most likely an indecomposable linear combination of tensor monomials.
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Geometrically, the tensor multiplication assigns a map

∶ ℙ( ) × ℙ( ) × ⋯ × ℙ( ) → ℙ ( ⊗ ⊗ ⋯ ⊗ ) (4-5)

sending a collection of dimension subspaces 𝕜 ⋅ ⊂ spanned by non zero vectors ∈ to
the dimension subspace 𝕜 ⋅ ⊗ ⊗ ⋯ ⊗ ⊂ ⊗ ⊗ ⋯ ⊗ .
Exercise 4.2. Verify that the map (4-5) is a well defined and injective.

The map (4-5) is called the Segre embedding and its image, i.e., the projectivization of the set of
decomposable tensors, is called the Segre variety. Since the decomposable tensors linearly span the
whole space, the Segre variety is not contained in a hyperplane. Note that the dimension of Segre
variety equals ∑ , where = − , and is much smaller then dimℙ ( ⊗ ⊗ ⋯ ⊗ ) =
= ∏( + )− . By the construction, the Segre variety is ruled by families of projective subspaces
of dimensions , , … , . The simplest example of the Segre variety is provided by the Segre
quadric from n∘ 2.5.1 on p. 22.

Example 4.1 (decomposable linear maps)
For any two vector spaces , , the bilinear map ∗ × → Hom( , ) is provided by sending
( , ) ∈ ∗ × to the linear operator → , ↦ ⟨ , ⟩ ⋅ . By the universal property of
tensor multiplication, there exists a unique linear map

∗ ⊗ → Hom( , ) (4-6)

sending every decomposable tensor ⊗ to the same operator. Note that this operator has rank ,
its image is spanned by ∈ , and the kernel is Ann( ) ⊂ .
Exercise 4.3. Check that a) every linear map ∶ → of rank equals ⊗ for appropriate

∈ ∗, ∈ uniquely up to proportionality determined by b) the linear map (4-6) is an
isomorphism for any vector spaces and of finite dimensions.

Geometrically, the operators of rank form the Segre variety ⊂ ℙ − = ℙ(Hom( , )), which is
ruled by two families of projective spaces ⊗ℙ( ), ℙ( ∗)⊗ and is not contained in a hyperplane.
If we fix some bases in , , write operators → by their matrices = ( ) in these bases,
and use the matrix elements as the homogeneous coordinates in ℙ(Hom( , )), then the Segre
variety is described by the equation rk = , which encodes the system of homogeneous quadratic
equations

det ( ℓ ℓ ) = ℓ ℓ − ℓ =

for all ⩽ < ℓ ⩽ dim , ⩽ < ⩽ dim . The Segre embedding

ℙ( ∗) × ℙ( ) = ℙ − × ℙ − ↪ ℙ − = ℙ(Hom( , ))

takes a pair of points = ( ∶ ∶ ⋯ ∶ ) , = ( ∶ ∶ ⋯ ∶ ) to the rank matrix
( , ) = ⋅ whose = . For dim = dim = , we get the Segre quadric in ℙ discussed

in n∘ 2.5.1 on p. 22.

4.2 Tensor algebra and contractions. Given a vector space , we write ⊗ = ⊗ ⊗ ⋯ ⊗
for the tensor product of copies of an call it the th tensor power of . We also put ⊗ ≝ 𝕜,

⊗ ≝ . The infinite direct sum T ≝ ⨁ ⩾
⊗ is called the tensor algebra of . This is
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an associative (non-commutative) graded algebra with the multiplication provided by the tensor
product of vectors. For every basis , , … , in , the tensor monomials

⊗ ⊗ ⋯ ⊗ (4-7)

form a basis of T over 𝕜. These monomials are multiplied just by writing them sequentially
with the sign ⊗ between then. Linear combinations of monomials are multiplied by the usual
distributivity rules. Thus, T may be thought of as the algebra of polynomials in non-commuting
variables . Another name for T is the free associative 𝕜-algebra with unit spanned by the vector
space . This name emphasizes the following universal property of the 𝕜-linear map

∶ ↪ T (4-8)

embedding into T as the subspace ⊗ of linear homogeneous polynomials.
Exercise 4.4. Prove that for every associative 𝕜-algebra with unit and 𝕜-linear map ∶ → ,
there exists a unique homomorphism of associative 𝕜-algebras ∶ T → such that1 = ∘ .
Convince yourself that this property characterizes the inclusion (4-8) uniquely up to a unique
isomorphism of the target space commuting with the inclusion.
4.2.1 Total contraction and duality. There is the canonical pairing between ( ∗)⊗ and ⊗

provided by the total contraction, which sends = ⊗ ⊗ ⋯ ⊗ , = ⊗ ⊗ ⋯ ⊗ to

⟨ , ⟩ ≝ ∏
=

⟨ , ⟩ . (4-9)

Since the right hand side is multilinear in ’s, every collection of ’s assigns the well defined linear
map ⊗ → 𝕜, which depends on ’s also multilinearly. Hence, the contraction of decomposable
tensors (4-9) is uniquely extended to the bilinear pairing ∗⊗ × ⊗ → 𝕜. For a pair of dual
bases , , … , ∈ , , , … , ∈ ∗, the tensor monomials ⊗ ⊗ ⋯ ⊗ and

⊗ ⊗ ⋯ ⊗ form the dual bases of T and T ∗ with respect to this pairing. In particular,
for a finite dimensional vector space , we have the canonical isomorphism

( ⊗ )
∗ ≃ ( ∗)⊗ . (4-10)

It follows from the universal property of ⊗ that the space ( ⊗ )
∗ of the linear maps ⊗ → 𝕜

is canonically isomorphic to the space of multilinear maps × × ⋯ × → 𝕜, i.e.,

( ⊗ )
∗ ≃ Hom( , … , ; 𝕜) . (4-11)

Combining (4-10) and (4-11) leads to the canonical isomorphism

( ∗)⊗ ≃ Hom( , … , ; 𝕜) . (4-12)

It sends a decomposable tensor ⊗ ⊗ ⋯ ⊗ to the multilinear map × × ⋯ × → 𝕜
taking ( , , … , ) ↦ ∏ = ( ).

1In other words, for every 𝕜-algebra , the homomorphisms of 𝕜-algebras T → stay in bijection with
the 𝕜-linear maps → .
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4.2.2 Partial contractions. Consider two inclusions1 of sets

{ , , … , } { , , … , }? _oo � � // { , , … , } ,

and write , for ( ), ( ) respectively. Thus, we have two numbered collections of indexes
= ( , , … , ), = ( , , … , ) staying in the fixed bijection. A partial contraction of ∗⊗

and ⊗ in indexes , is the linear map

∶ ∗⊗ ⊗ ⊗ → ∗⊗( − ) ⊗ ⊗( − )

which contracts th factor of ∗⊗ with th factor of ⊗ for every = , , … , and keeps
all the other factors in their initial order:

⊗ ⊗ ⋯ ⊗ ⊗ ⊗ ⊗ ⋯ ⊗ ↦ ∏ = ⟨ , ⟩ ⋅ (⊗
∉

) ⊗ ( ⊗
∉

) . (4-13)

Note that different choices of the maps , lead to the different contraction maps even if the images
of , remain unchanged.
Example 4.2 (innner product between vectors and multilinear forms)
Let us treat a -linear form ( , , … , ) as a tensor from ∗⊗ via isomorphism (4-12). The
contraction of this tensor with a vector ∈ in the first tensor factor is a tensor from ∗⊗( − ),
which can be considered as an ( − )-linear form on . This form is called the innner product of
and and denoted by or ⌞ .

Exercise 4.5. Check that ( , , … , − ) = ( , , , … , − ).
4.2.3 The linear support of a tensor. Given a tensor ∈ ⊗ , the intersection of all vector

subspaces ⊂ such that ∈ ⊗ is called the linear support of and denoted by Supp( ) ⊂ .
It follows from the next the Exercise 4.6 that Supp( ) is the unique minimal2 subspace in among
those ⊂ for which ∈ ⊗ .
Exercise 4.6. For any subspaces , ⊂ , verify that ⊗ ∩ ⊗ = ( ∩ )⊗ in ⊗ .

The dimension of Supp is called the rank of and denoted by rk ≝ dim Supp . We say that is
degenerated if rk < dim . In this case, the number of variables in the expansion of through the
basis tensor monomials can be reduced by a linear change of variables.
Exercise 4.7. Show that if dim Supp( ) = and the ground field is algebraically closed, then

= ⋅ ⊗ for some ∈ 𝕜, ∈ .
The space Supp( ) admits an effective description as a linear span of some finite collection of vectors
constructed by means of contraction maps. Namely, for every injective3 map

∶ { , , … , ( − )} ↪ { , , … , } , (4-14)

write { , , … , − } ⊂ { , , … , } for the image of and ̂ for the remaining index outside
im . Consider the contraction map

∶ ∗⊗( − ) → , ↦ ( , , … , ( − ))
( , ,…, − ) ( ⊗ ) (4-15)

1Not necessary monotonous.
2With respect to inclusions.
3Not necessary monotonous.
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which couples th tensor factor of ∗⊗( − ) with th tensor factor of for all ⩽ ⩽ ( − ).
The result of such contraction is obviously a linear combination of ̂th tensor factors of . Thus, it
belongs to Supp( ).
Theorem 4.1
For every ∈ ⊗ , the linear support Supp( ) ⊂ is spanned by the images of all contraction maps
(4-15) coming from ! different choices of the map (4-14).

Proof. Let Supp( ) = ⊂ . It is enough to check that every linear form ∈ ∗ annihilating
all the subspaces im ( ) annihilates as well. Assume the contrary: let a linear form ∈ ∗

annihilate all ( ∗⊗( − )
) but have a non-zero restriction on . Chose a basis , , … , ∈ ∗

such that = and the restrictions of , , … , on form a basis in ∗. Expand through
the tensor monomials built from the dual basis vectors , , … , ∈ . The value

(� ( � ⊗ ⊗ ⋯ ⊗ − ) �)�

is equal to the complete contraction of with the basic monomial ⊗ ⊗ ⊗ ⋯ ⊗ − in
the order of coupling prescribed by . This contraction kills all tensor monomials in the expansion
of except for the one, dual to the monomial obtained from ⊗ ⊗ ⊗ ⋯ ⊗ − by some
permutation of factors depending on . Thus, the result of contraction is equal to the coefficient of
some monomial containing in the expansion of . Since every such monomial can be reached
by appropriate choice of , we conclude that ∉ Supp( ). Contradiction. �

4.3 Symmetric and grassmannian algebras. A multilinear map ∶ × × ⋯ × → is
called symmetric if it remains unchanged under permutations of the arguments, and alternating if it
vanishes as soon some of the arguments coincide.
Exercise 4.8. Verify that under a permutation of the arguments, the value of an alternating
multilinear map is multiplied by the sign of permutation. Convince yourself that this property
implies the alternating property if char 𝕜 ≠ .

We write Sym ( , ) ⊂ Hom( , … , ; ) and Alt ( , ) ⊂ Hom( , … , ; ) for subspaces of
symmetric and alternating multilinear maps. Everything said about the universal multilinear maps
in n∘ 4.1.1 on p. 38 makes sense separately for the symmetric and alternating maps as well. The
universal symmetric multilinear map is denoted by

∶ × × ⋯ × → , ( , , … , ) ↦ … , (4-16)

and called the commutativemultiplication of vectors. Its target space is called the th symmetric
power of . The universal alternating multilinear map is denoted by

∶ × × ⋯ × → , ( , , … , ) ↦ ∧ ∧ ⋯ ∧ , (4-17)

and called the exterior1 multiplication of vectors. Its target space is called the th exterior
power of . The universal symmetric and alternating multilinear maps are unique up to a unique
isomorphism of the target space commuting with the universal map. The both can be constructed
for all at once by factorizing the tensor algebra T by appropriate two-sided ideals.

1Also known as grassmannian or super-commutative.
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4.3.1 The symmetric algebra. Write com ⊂ T for a two-sided ideal spanned by all the
differences

⊗ − ⊗ , , ∈ . (4-18)
This ideal is obviously homogeneous in the sense that com = ⊕ ⩾ ( com ∩ ⊗ ), and the degree
component com ∩ ⊗ of com is linearly generated over 𝕜 by all differences of the form

( ⋯ ⊗ ⊗ ⊗ ⋯ ) − ( ⋯ ⊗ ⊗ ⊗ ⋯ ) , (4-19)

where the both terms are decomposable of degree and vary only in the order of , . The factor
algebra ≝ T ∕ com is called the symmetric algebra of . The multiplication in comes from
the tensor multiplication in T and is commutative, because of the relations = appearing
after the factorization through (4-18). The symmetric algebra is graded

= ⨁
⩾

, where ≝ ⊗ ∕( com ∩ ⊗ ) .

Exercise 4.9. Show that for every basis , , … , ⊂ , the monomials ⋯ form
a basis of over 𝕜.

Thus, we get an isomorphism of algebras ≃ 𝕜[ , , … , ]. Under this isomorphism,
turns to the subspace of homogeneous polynomials of degree .
Exercise 4.10. Deduce from the universal property of tensor multiplication that the map

× × ⋯ × →

provided by the multiplication in is the universal symmetric multilinear map. Convince
yourself that is the free commutative 𝕜-algebra spanned by in the sense that for every
commutative 𝕜-algebra and 𝕜-linear map ∶ → , there exists a unique homomorphism
of 𝕜-algebras ̃∶ → such that = ̃ ∘ , where ∶ ↪ embeds in as the space
of linear homogeneous polynomials. Show that the latter embedding is uniquely characterized
by the previous universal property up to a unique isomorphism commuting with .
4.3.2 The exterior1algebra of a vector space is defined as the factor algebra ≝ T ∕ alt ,

where alt ⊂ T is the two-sided ideal generated by all tensor squares ⊗ , ∈ .
Exercise 4.11. Check that the space alt ∩ ⊗ contains all sums ⊗ + ⊗ , , ∈ , and
is linearly generated over 𝕜 by these sums if char 𝕜 ≠ .

The ideal alt also splits in the direct sum of homogeneous components

alt = ⊕
⩾

( alt ∩ ⊗ ) .

The degree component alt ∩ ⊗ is spanned by decomposable tensors of the form

(⋯ ⊗ ⊗ ⊗ ⋯) , ∈ .

By the Exercise 4.11, all the sums ( ⋯ ⊗ ⊗ ⊗ ⋯ ) + ( ⋯ ⊗ ⊗ ⊗ ⋯ ) belong to alt ∩ ⊗

as well and linearly generate it over 𝕜 as soon char 𝕜 ≠ . The multiplication in is called the
1Also known as the grassmannian algebra or free super-commutative algebra of .
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exterior1 multiplication and denoted by the wedge sign ∧. Note that for any , ∈ , the relations
∧ = and ∧ = − ∧ hold in . Hence, under a permutation of factors, the exterior

product of vectors is multiplied by the sign of permutation:

∀ ∈ ∧ ∧ ⋯ ∧ = sgn( ) ⋅ ∧ ∧ ⋯ ∧ .

This property of a multiplication is known as the super-commutativity. Like the symmetric algebra,
the exterior algebra is graded:

= ⨁
⩾

, where ≝ ⊗ ∕( alt ∩ ⊗ ) .

Exercise 4.12. Deduce from the universal property of tensor multiplication that the map

× × ⋯ × →

provided by the exterior multiplication in is the universal alternating multilinear map.
Convince yourself that is the free super-commutative 𝕜-algebra spanned by in the sense that
for every super-commutative 𝕜-algebra and 𝕜-linear map ∶ → , there exists a unique
homomorphism of 𝕜-algebras ̃∶ → such that = ̃ ∘ , where ∶ ↪ embeds in

as the subspace = ⊗ . Show that the latter embedding is uniquely characterized by
the previous universal property up to a unique isomorphism commuting with .

Proposition 4.1
For every basis , , … , in the grassmannian monomials ≝ ∧ ∧ ⋯ ∧ , numbered
by strictly increasing multi-indexes = ( , , … , ), ⩽ < < ⋯ < ⩽ , form a basis of

.

Proof. Write for the vector space of dimension ( ) with the basis formed by symbols , where
= ( , , … , ) runs through all strictly increasing sequences of length in , , … , . Consider

the multilinear map ∶ × × ⋯ × → that takes an arbitrary collection , , … , of
the basis vectors from to ( , , … , ) = sgn( ) ⋅ , where = ( ( ), ( ), … , ( )) is
the strictly increasing permutation of the indexes , , … , and we put ( , , … , ) =
when some of ’s coincide. For any alternating multilinear map ∶ × × ⋯ × → , there
exists a unique linear operator ∶ → such that = ∘ : the action on the basis of
has to be ( ( , ,…, )) = ( , , … , ). Thus, is the universal alternating multilinear map.
Hence, there exists an isomorphism ⥲ sending ↦ ∧ ∧ ⋯ ∧ = . �

Corollar 4.1
dim = ( ), where = dim . In particular, = for > , and dim = .

Exercise 4.13. Check that ∧ = (− ) ∧ for any ∈ , ∈ , and describe the
centre2 ( ).

1Or grassmannian, or super-commutative
2That is, all elements commuting with every element of the algebra.
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4.3.3 Grassmannian polynomials. It follows from the Proposition 4.1 that every choice of
basis , , … , in a vector space assigns the isomorphism of 𝕜-algebras

⥲ ⧼ , , … , ⧽ ,

where ⧼ , , … , ⧽ stays for the algebra of grassmannian polynomials, i.e., polynomials with
coefficients from 𝕜 in the variables satisfying the relations ∧ = and ∧ = − ∧ .
When work with the grassmannian polynomials, we always write = ( , , … , ) for a strictly
increasing collection of indexes, ̂ = ( ̂ , ̂ , … , ̂ − ) = { , , … , } ∖ for the complementary
strictly increasing collection, and # ≝ for the length of . The sum | | ≝ ∑ is called the weight
of .
Exercise 4.14. Check that ∧ ̂ = (− )| |+ # ( +# ) ⋅ ∧ ∧ ⋯ ∧ .

Example 4.3 (linear substitution of variables)
Let the variables , , … , be linearly expressed through the variables , , … , as

= ∑ (4-20)

for some × matrix = ( ). Then the grassmannian monomials are expressed through
as

= ∧ ∧ ⋯ ∧ = ( �∑ )� ∧ (�∑ ) � ∧ ⋯ ∧ ( �∑ ) � =

= ∑
⩽ < <⋯< ⩽

∑
∈

sgn( ) ( ) ( ) ⋯ ( ) ∧ ∧ ⋯ ∧ = ∑ ,

where runs through increasing collections of length and denotes the × minor of
situated in the rows , , … , and columns , , … , .
Example 4.4 (multirow cofactor expansions of determinant)
Let us perform the substitution (4-20) in the identity from the Exercise 4.14 using a square ×
matrix . The left hand side of the identity turns to

(�∑
∶

# =#

)� ∧ (� ∑
∶

# =( −# )

̂ )� = (− ) # ( +# )
∑

∶
# =#

(− )| |
̂̂ ∧ ∧ ⋯ ∧ .

The right hand side becomes (− ) # ( +# )(− )| | det( )⋅ ∧ ∧ ⋯ ∧ . Thus, for every collection
= ( , , … , ) of rows in a square matrix = ( ), the following relation holds

∑
∶

# =#

(− )| |+| |
̂̂ = det( ) , (4-21)

where the summation goes over all × minors situated in the rows ( , , … , ).
If we replace ̂ by another collection ̂ complementary to the other ≠ , then we get in the

right hand side ∧ ̂ = . Thus, for every ≠ ,

∑
∶

# =#

(− )| |+| |
̂̂ = . (4-22)
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The identities (4-21) and (4-22) are known as the Laplace relations. They generalize the cofactor
expansions of determinants. If we organize × minors of and their complements in two ( )×( )
matrices 𝒜 = ( ) and 𝒜∨ = ( ∨ ), where1 ∨ = (− )| |+| | ̂ ̂, then all the Laplace relations
can be combined in the one matrix identity 𝒜 ⋅𝒜∨ = det ⋅ .

Exercise 4.15. Write the Laplace relations for multicolumn cofactor expansions and prove that
𝒜∨ ⋅𝒜 = det ⋅ as well.

Example 4.5 (reduction of grassmannian quadratic form)
Certainly, a grassmannian quadratic form can not be reduced to a «sum of squares» like in the
Proposition 2.1 on p. 16. However, every homogeneous grassmannian polynomial of degree two
over an arbitrary field 𝕜 takes in appropriate coordinates the form

∧ + ∧ + ⋯ + − ∧ , (4-23)

called the Darboux normal form. To achieve it for a given ∈ , we renumber the initial basis
, , … , of in such a way that = ∧ ( + ⋯ + ) + ∧ ( + ⋯ + ) +

(terms without , ) , where ≠ . Then we pass to the new basis { , , , … , } which has
= + ⋯ + . The substitution = ( − − ⋯ − )∕ in leads to

= ∧ + ∧ ( + ⋯ + ) + (terms without ) =
= ( − − ⋯ − ) ∧ + (terms without , ) .

Now we pass to the basis { , , , … , }, where = − − ⋯ − . In this basis,

= ∧ + (terms without , )

and we can continue by induction.

Convention 4.1. In the rest of §4 we assume on default that char(𝕜) = .

4.4 Symmetric and alternating tensors. The symmetric group acts on ⊗ by permutations
of factors in decomposable tensors: for ∈ , we put

( ⊗ ⊗ ⋯ ⊗ ) = ( ) ⊗ ( ) ⊗ ⋯ ⊗ ( ) . (4-24)

Since the right hand side is multilinear in , , … , , this formula assigns the well defined linear
map ∶ ⊗ → ⊗ .

Definition 4.3
A tensor ∈ ⊗ is called symmetric, if ( ) = for all ∈ . A tensor ∈ ⊗ is called
alternating, if ( ) = sgn( ) ⋅ for all ∈ . We write Sym = { ∈ ⊗ | ∀ ∈ ( ) = }
and Alt = { ∈ ⊗ | ∀ ∈ ( ) = sgn( )} for the space of symmetric and alternating
tensors respectively. Note that both are the subspaces in ⊗ , and they should not be confused
with the quotient spaces , of ⊗ .

1Note that , swap places.
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4.4.1 Standard bases. For every basis , , … , in , a basis of Sym is formed by the
complete symmetric tensors

[ , ,…, ] ≝
(

the sum of all tensor monomials containing
factors , factors , … , factors ,)

(4-25)

because all the summands appear in the expansion of every symmetric tensor with equal coeffi-
cients. The tensors (4-25) are indexed by the collections of non-negative integers ( , , … , )
such that ∑ = .
Exercise 4.16. Make it sure that the sum (4-25) consists of !

! !⋯ ! terms.
Similarly, a basis of Alt is formed by the complete alternating tensors

⟨ , ,…, ⟩ ≝ ∑
∈

sgn( ) ⋅ ( ) ⊗ ( ) ⊗ ⋯ ⊗ ( ) (4-26)

numbered by increasing sequences ⩽ < < ⋯ < ⩽ .

4.5 Polarization of commutative polynomials. The quotient map ⊗ ↠ sends every
summand of (4-25) to the same commutative monomial ⋯ . Thus, this map sends

[ , ,…, ] to !
! !⋯ ! ⋅ ⋯ . Over the ground field of zero characteristic, we

conclude that for every , the factorization through the commutativity relations assigns the iso-
morphism Sym ⥲ . The inverse isomorphism is denoted by

pl∶ ⥲ Sym , ↦ ̃,

and called the complete polarization of polynomials. For the dual space ∗, the complete polar-
ization map pl∶ ∗ ⥲ Sym ∗ sends every monomial = ⋯ to the tensor
̃ = ! !⋯ !

! ⋅ [ , ,…, ] ∈ Sym ∗, which can be viewed as the symmetric multilin-
ear map ̃∶ × × … × → 𝕜 acting on a collection of vectors , , … , ∈ × ⋯ × via
the complete contraction with ⊗ ⊗ ⋯ ⊗ .
Exercise 4.17. Verify that for every ∈ , the complete contraction of ⊗ with

! ! ⋯ !
! ⋅ [ , ,…, ]

is equal to the result of evaluation of monomial ⋯ ∈ 𝕜[ , , … , ] on the
coordinates of .

We conclude that the polynomial function ∶ 𝔸( ) → 𝕜 attached to a homogeneous polynomial
∈ in n∘ 1.1.2 on p. 3 is described in coordinate-free terms as ( ) = (̃ , , … , ), where

̃ ∈ Sym ∗ ⊂ ∗⊗ is the unique symmetric tensor mapped to under factorization through the
commutativity relations and considered as a symmetric multilinear map × × ⋯ × → 𝕜. For

= , we get the polarization of quadratic forms considered in n∘ 2.1.1 on p. 16.
Since the value (̃ , , … , ) does not depend on the order of arguments, we write

̃( , , … , )
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when the collection ( , , … , ) consists of vectors , vectors , … , vectors .
Exercise 4.18. For any polynomial ∈ ∗ and vectors , , … , ∈ , show that

( + + ⋯ + ) = ̃(( + + ⋯ + ) ) =

∑
…

!
! ! ⋯ ! ⋅ ̃( , , … , ) ,

(4-27)

where the summation goes over all integer , , … , such that + + ⋯ + =
and ⩽ ⩽ for all .

Proposition 4.2
The complete polarization of a homogeneous polynomial ∈ ∗ on a vector space1 over a
field of zero characteristic can be computed by the formula

! ⋅ (̃ , , … , ) = ∑
⊊{ ,…, }

(− )#
(�∑

∉
)� , (4-28)

where the left summation goes over all proper subsets ⊊ { , , … , }, including = ∅, for
which we put #∅ = .

Example 4.6
For homogeneous quadratic and cubic polynomials ∈ ∗, ∈ ∗, we get

̃( , ) = ( + ) − ( ) − ( ) ,
(̃ , , ) = ( + + ) − ( + ) − ( + ) − ( + ) + ( ) + ( ) + ( ) .

Proof of the Proposition 4.2. In the expansion (4-27) for

( + + ⋯ + ) = ̃(( + + ⋯ + ) ) ,

there is just one term containing all the vectors , , … , , namely ! ⋅ (̃ , , … , ). For a
proper subset ⊊ { , , … , }, every summand which contains no with ∈ appears in (4-27)
with the same coefficient as in the expansion (4-27) written for (∑ ∉ ), because the latter is
obtained from ( + + ⋯ + ) by setting = for all ∈ . Removal of these summands via
the standard combinatorial inclusion-exclusion procedure leads to the required formula

! ⋅ (̃ , , … , ) = ( �∑ ) � − ∑
{ }

( �∑
≠

) � + ∑
{ , }

( � ∑
≠ ,

) � − ∑
{ , , }

( � ∑
≠ , ,

) � + ⋯ .

�

1Not necessary finite dimensional.
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4.5.1 Duality. For a vector space of finite dimensuon over a field of zero characteristic,
the complete contraction between ⊗ and ∗⊗ provides the spaces and ∗ with the
perfect pairing that couples polynomials ∈ and ∈ ∗ to the complete contraction of
their complete polarizations ̃ ∈ ⊗ and ̃ ∈ ∗⊗ .
Exercise 4.19. For a pair of dual bases , , … , ∈ , , , … , ∈ ∗, verify that all the
non-zero couplings between the basis monomials are exhausted by

⟨ ⋯ , ⋯ ⟩ = ! ! ⋯ !
! . (4-29)

Note that the monomials constructed from the dual basis vectors become the dual bases of the
polynomial rings only after rescaling by appropriate combinatorial factors.

4.5.2 Derivative of a polynomial along a vector. Associated with every vector ∈ is the
linear map ∶ ∗⊗ → ∗⊗( − ), ↦ , provided by the inner multiplication1 of -linear
forms on by , which takes an -linear form ∈ ∗⊗ to the ( − )-linear form

( , , … , − ) = ( , , , … , − ) .

Composing this map with preceded complete polarization ∗ ⥲ Sym ∗ ⊂ ∗⊗ and subsequent
factorization ∶ ∗⊗( − ) ↠ − ∗ through the commutativity relations2, assigns the linear map

pl ∶ ∗ → − ∗ , ( ) ↦ pl ( ) ≝ (̃ , , , … , ) , (4-30)

which depends linearly on ∈ . This map fits in the commutative diagram

∗⊗ ⊃ Sym ∗ // ∗⊗( − )

����
∗ pl //

pl ∼

OO

− ∗ .

(4-31)

The polynomial pl ( ) (̃ , , … ) ∈ − ( ∗) is called the polar of with respect to . For
= , the polar of a vector with respect to a quadratic worm ∈ ∗ is the linear form
↦ (̃ , ) considered3 in n∘ 2.2.1 on p. 18.
In terms of dual bases , , … , ∈ , , , … , ∈ ∗, the contraction of the first tensor

factor in ∗⊗ with the basis vector ∈ maps the complete symmetric tensor [ , ,…, ]
either to the complete symmetric tensor containing the ( − ) factors or to zero for = .
Hence, ⋯ = … −

−
− +

+ … = ⋯ . Since
pl is linear in both , , we conclude that for every = ∑ , the polar polynomial of with
respect to is nothing but the derivative of the polynomial along the vector divided by deg ,
i.e.,

pl = deg( ) = deg( ) ∑
=

.

1See the Example 4.2 on p. 42.
2Which is the linear map corresponding to the commutative multiplication of covectors from for-

mula (4-16) on p. 43 by the universal property of tensor product.
3Recall that the zero set of this form in ℙ( ) is the hyperplane intersecting the quadric ( ) ⊂ ℙ( ) along

its apparent contour viewed from .
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Note that this forces the right hand side to be independent on the choice of dual bases in and ∗. It
follows from the definition of polar map that the derivatives along vectors commute, = ,
and for all , ∈ , ∈ ∗, ⩽ ⩽ , the following relation holds:

! ( ) = ! ̃( , ) = ( − )!
−

− ( ) , (4-32)

Exercise 4.20. Prove the Leibniz rule ( ) = ( ) ⋅ + ⋅ ( ) and show that

(̃ , , … , ) = ! … .

Example 4.7 (Ta lor’s expansion)
For = , the expansion (4-27) from the Exercise 4.18 turns to the identity

( + ) = (̃ + , + , … , + ) = ∑
=

( ) ⋅ (̃ , − ) ,

where = deg . It holds for any polynomial ∈ ∗ and all vectors , ∈ . The relations
(4-32) allow us to rewrite this identity as the Taylor expansion for at :

( + ) =
deg

∑
= ! ( ) , (4-33)

which is an exact equality in the polynomial ring ∗.
4.5.3 Polars and tangents. Given a hypersurface = ( ) ⊂ ℙ( ) of degree and a line

ℓ = ( ) ⊂ ℙ( ), the intersection ℓ∩ consists of all points + such that ( ∶ ) ∈ ℙ = ℙ(𝕜 )
is a root of the homogeneous polynomial ( , ) ≝ ( + ) ∈ 𝕜[ , ]. Over an algebraically
closed field 𝕜, this polynomial is either zero or a product of non-zero homogeneous linear forms
in , , possibly coinciding:

( , ) = ∏( ″ − ′ ) = ∏ det (
′
″) , (4-34)

where = ( ′ ∶ ″) are some mutually distinct points on ℙ and ∑ = . If = , then
ℓ ⊂ . If ≠ , then the intersection ℓ ∩ consists of the points = ′ + ″ . The exponent

of the linear form ″ − ′ in the factorization (4-34) is called the intersection multiplicity of
the hypersurface with the line ℓ at the point , and is denoted by ( , ℓ) . If ( , ℓ) = , the
intersection point is called simple or transversal. Otherwise, the intersection of ℓ and at
is called a multiple. The total number of intersections counted with their multiplicities equals the
degree of .

A line ℓ = ( ) passing through ∈ is called tangent to at if either ℓ ⊂ or ( , ℓ) ⩾ .
In other words, the line ℓ is tangent to at if the polynomial ( + ) ∈ 𝕜[ ] either is the zero
polynomial or has a multiple root at zero. The Taylor expansion1 for ( + ) at starts with

( + ) = ( ) (̃ − , ) + ( ) (̃ − , ) + ⋯ .

1See 4-33 on p. 51.
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Therefore the line ℓ = ( ) is tangent to at if and only if (̃ − , ) = . This is the straight-
forward generalization of the Proposition 2.2 on p. 17.

If ( − , ) does not vanish identically as a linear form in , the point is called a smooth
point of . The hypersurface ⊂ ℙ( ) is called smooth if every point ∈ is smooth. For a smooth

∈ the linear equation ( − , ) = on ∈ defines a hyperplane in ℙ( ) filled by the
lines ( ) tangent to at . This hyperplane is called the tangent space to at and denoted by

= { ∈ ℙ( ) | (̃ − , ) = }.
If ( − , ) is the zero linear form in , the hypersurface is called singular at , and the

point is called a singular point of . Since the coefficients of polynomial (̃ − , ) = ( ),
considered as a linear form in , are equal to the partial derivatives of evaluated at the point
by (4-32), the singularity of ∈ = ( ) is expressed by the equations

( ) = for all ,

in which case any line ℓ passing through has ( , ℓ) ⩾ , i.e., is tangent to at . Thus, the
tangent lines to at a singular point of fill the whole ambient space ℙ( ).

If is either a smooth point on or a point outside , then the polar polynomial
pl ( ) = (̃ , − )

does not vanish identically as a homogeneous polynomial of degree − in , because otherwise,
all partial derivatives of pl ( ) = (̃ , − ) in would also vanish, and in particular,

(̃ − , ) =
−

− pl ( ) =

identically in , meaning that is a singular point of , in contradiction with our choice of . The
zero set of the polar polynomial pl ∈ − ∗ is denoted by

pl ≝ (pl ) = { ∈ ℙ( ) | (̃ , − ) = } (4-35)
and called the polar hypersurface of the point with respect to . If is a quadric, then pl is
exactly the polar hyperplane of considered in n∘ 2.3.1 on p. 19. As in the Corollary 2.2 on p. 17,
for a hypersurface of arbitrary degree, the intersection ∩pl coincides with the apparent contour
of viewed from the point , that is, with the locus of all points ∈ such that the line ( ) is
tangent to at .

More generally, for an arbitrary point ∈ ℙ( ) the locus of points
pl − ≝ { ∈ ℙ( ) | (̃ − , ) = }

is called the th degree polar of the point with respect to or the th degree polar of at for
∈ . If the polynomial (̃ − , ) vanishes identically in , we say that the th degree polar is

degenerate. Otherwise, the th degree polar is a projective hypersurface of degree . The linear1
polar of at a smooth point ∈ is simply the tangent hyperplane to at : pl − = . The
quadratic polar pl − is the quadric passing through and having the same tangent hyperplane
at as . The cubic polar pl − is the cubic hypersurface passing through and having the same
quadratic polar at as , etc. The th degree polar pl − at a smooth point ∈ passes through
and has pl − pl − = pl − for all ⩽ ⩽ − , because

pl − pl − ( ) = p̃l − ( − , ) = (̃ − , − , ) = (̃ − , ) = pl − ( ) .
1That is, of the first degree.
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4.5.4 Linear support of a homogeneous polynomial. For a polynomial ∈ ∗, we write
Supp for the minimal1 vector subspace ⊂ ∗ such that ∈ , and call it the linear support
of . Over a field of zero characteristic, Supp = Supp ,̃ where ̃ ∈ Sym ∗ ⊂ ∗⊗ is the
complete polarization of . By the Theorem 4.1, Supp ̃ is linearly generated by the images of the
( − )-tuple contraction maps

∶ ⊗( − ) → ∗ , ↦ , , … , ( − )
, ,…, −

( ⊗ )̃ ,

coupling all the ( − ) factors of ⊗( − ) with some − factors of ̃ ∈ ∗⊗ in order indicated
by the sequence = ( , , … , − ). For the symmetric tensor ,̃ such a contraction does not
depend on and maps every decomposable tensor ⊗ ⊗ ⋯ ⊗ − to the linear form on
proportional to the derivative … − ∈ ∗. Thus, Supp( ) is linearly generated by all
( − )-tuple partial derivatives

⋯ ( ) , where ∑ = − . (4-36)

The coefficient of in the linear form (4-36) depends only on the coefficients of monomial
… −

−
+ +

+ …

in . If we write the polynomial as

= ∑
+⋯+ =

!
! ! ⋯ ! … ⋯ , (4-37)

the linear form (4-36) turns to

! ⋅ ∑
=

… − ( + ) + … . (4-38)

Totally, we get ( + −
− ) such the linear forms staying in bijection with the nonnegative integer

solutions , , … , of the equation + + ⋯ + = − .
Proposition 4.3
Let 𝕜 be a field of zero characteristic, a finite dimensional vector space over 𝕜, and ∈ ∗ a
polynomial written in the form (4-37) in some basis of ∗. If = for some linear form ∈ ∗,
then the ×( + −

− ) matrix built from the coefficients of linear forms (4-38) has rank . In this case,
there are at most linear forms ∈ ∗ such that = , and they differ from one another by
multiplications by the th roots of unity laying in 𝕜. For algebraically closed field 𝕜, the converse
is also true: if all the linear forms (4-38) are proportional, then = for some linear form
proportional to the forms (4-38).

Proof. The equality = means that Supp( ) ⊂ ∗ is the 1-dimensional subspace spanned
by . In this case, all linear forms (4-38) are proportional to . Such a form = has =
if and only if = in 𝕜. Conversely, let all the linear forms (4-38) be proportional, and ≠ be
one of them. Then, Supp( ) = 𝕜 ⋅ is the 1-dimensional subspace spanned by . Hence, =
for some ∈ 𝕜, and therefore, = for2 = √ ⋅ . �

1With respect to inclusions.
2Here we use that 𝕜 is algebraically closed.
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4.5.5 The Veronese varieties 𝑽(𝒏,𝒌). The Veronese map

, ∶ ℙ( ∗) ↪ ℙ( ∗) , ↦ , (4-39)

for dim = + embeds ℙ into ℙ , where = ( + ) − . The image of map (4-39) is called the
Veronese variety and denoted by ( , ) ⊂ ℙ( ∗). It consists of perfect th powers of linear
forms ∈ ∗ considered up to proportionality. It follows from the Proposition 4.3 that ( , ) is
indeed an algebraic projective variety described by a system of quadratic equations asserting the
vanishing of all × -minors in × ( + −

− ) matrix formed by the coefficients of the linear forms
(4-38). For example, a homogeneous polynomial in two variables ( , ) = ∑ = ( ) −

has −

− − = ! ⋅ ( + + ) .

Hence, the image of the Veronese embedding , ∶ ℙ ↪ ℙ is described by the condition

rk (
… −
… ) = ,

which agrees with the Example 1.4 on p. 11 and is equivalent to a system of quadratic equations

det ( + + ) =

on the coefficients of the polynomial . A polynomial satisfies these equations if and only if
= for some linear form = + , and in this case ( ∶ ) = ( ∶ + ) for all .

4.6 Polarization of grassmannian polynomials. The quotient map ⊗ ↠ sends every
summand of the basis alternating tensor (4-26)

⟨ , ,…, ⟩ ≝ ∑
∈

sgn( ) ⋅ ( ) ⊗ ( ) ⊗ ⋯ ⊗ ( )

to the same grassmannian monomial = ∧ ∧ ⋯ ∧ . Thus, this map sends ⟨ , ,…, ⟩
to ! , and therefore, over a field of zero characteristic, the factorization through the alternating
relations assigns the isomorphism Alt ⥲ . By analogy with the usual commutative polyno-
mials, the inverse isomorphism is denoted by pl∶ ⥲ Alt , ↦ ̃ , and called the complete
polarization of grassmannian polynomials.

4.6.1 Duality. For a finite dimensional vector space over a field of zero characteristic, there
is the perfect pairing between the spaces and ∗ coupling ∈ and ∈ ∗ to the
complete contraction of their complete polarizations ̃ ∈ ⊗ and ̃ ∈ ∗⊗ .
Exercise 4.21. Convince yourself that the non zero couplings between the basis monomials

∈ and ∈ ∗ are exhausted by ⟨ , ⟩ = ∕ !.
4.6.2 Partial derivatives in the exterior algebra. Given a covector ∈ ∗, we write

pl ∶ → −

for the composition of inner multiplication ∶ ⊗ → ⊗( − ) by with preceding complete
polarization pl∶ ⥲ Alt and subsequent factorization ∶ ⊗( − ) ↠ − through the
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alternating relations1. Thus, pl fits in the commutative diagram

∗⊗ ⊃ Skew ∗ // ∗⊗( − )

����
∗ pl

//

pl ∼

OO

− ∗

(4-40)

similar to the diagram from formula (4-31) on p. 50. By analogy with n∘ 4.5.2, the polynomial
≝ deg ⋅ pl

is called the derivative of homogeneous grassmannian polynomial ∈ in direction of covector
∈ ∗. Since pl is linear in , the derivation along = ∑ splits as = ∑ . If

does not depend on , then = . Therefore, a nonzero contribution to is given only by
the derivations for ∈ .
Exercise 4.22. Check that ∧ ∧ ⋯ ∧ = ∧ ∧ … ∧ for every collection of
indexes , , … , , not necessary increasing.

It follows from the Exercise 4.22 that
∧ ∧ ⋯ ∧ = (− ) − ∧ ∧ … ∧ − ∧ + …

= (− ) − ∧ ∧ … ∧ − ∧ + …
= (− ) − ∧ … ∧ − ∧ + … .

In other words, the derivation of a monomial along the basis covector dual to the th variable from
the left in the monomial behaves as (− ) − ∕ , where the grassmannian partial derivative ∕
takes to and annihilates all with ≠ , exactly as in the symmetric case. However, the sign
(− ) in the previous formula forces the grassmannian partial derivatives to satisfy the grassmannian
Leibniz rule, which differs from the usual one by an extra sign.
Exercise 4.23 (the grassmannian Leibni rule). For any homogeneous grassmannian poly-
nomials , ∈ and a covector ∈ , prove that

( ∧ ) = ( ) ∧ + (− )deg ∧ ( ) . (4-41)

Since the grassmannian polynomials are linear in each variable, = for all ∈ , ∈ .
The relation = forces the grassmannian derivatives to be super-commutative, that is,

∀ , ∈ ∗ = − .

4.6.3 Linear support of a homogeneous grassmannian polynomial. The linear support
Supp of a homogeneous grassmannian polynomial of degree is defined to be the minimal2
vector subspace ⊂ such that ∈ . It coincides with the linear support of the complete
polarization ̃ ∈ Skew , and is linearly generated by all ( − )-tuple partial derivatives3

≝ …
−

= …
−

,

1Which is the linear map corresponding to the alternating multiplication of covectors from formula (4-17)
on p. 43 by the universal property of tensor product.

2With respect to inclusions.
3Compare with n∘ 4.5.4 on p. 53.
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where = … − runs through all sequences of − different indexes taken from the set
{ , , … , }, = dim . Up to a sign, the order of indexes in is not essential, and we will not
assume the indexes to be increasing, because this simplifies the notations in what follows.

Let us expand as a sum of basis monomials
= ∑ = ∑

…
… ∧ ∧ ⋯ ∧ , (4-42)

where = … also runs through the -tuples of different but non necessary increasing in-
dexes, and the coefficients … ∈ 𝕜 are alternating in … . Nonzero contributions to
are given only by the monomials with ⊃ . Therefore, up to a common sign,

= ± ∑
∉

… − . (4-43)

Proposition 4.4
The following conditions on a grassmannian polynomial ∈ written in the form (4-42) are
equivalent:

1) = ∧ ∧ ⋯ ∧ for some , , … , ∈

2) ∧ = for all ∈ Supp( )

3) for any two collections … + and … − consisting of + and − different
indexes, the following Plücker relation holds

+

∑
=

(− ) −
… − … ̂ … +

= , (4-44)

where the hat in … ̂ … +
means that the index should be removed.

Proof. Condition (1) holds if and only if belongs to the top homogeneous component of its linear
span, ∈ dim Supp( ) Supp( ). Condition (2) means the same because of the following exercise.
Exercise 4.24. Show that ∈ is homogeneous of degree dim if and only if ∧ = for

∈ .
The Plücker relation (4-44) asserts the vanishing of the coefficient of ∧ ∧ ⋯ ∧ + in the
product ( … − )∧ . In other words, (4-44) is the coordinate form of condition (2) written for
vector = … − from the formula (4-43). Since these vectors linearly generate the subspace
Supp( ), the whole set of the Plücker relations is equivalent to the condition (2). �

Example 4.8 (the Plücker quadric)
Let = , dim = , and , , , be a basis of . Then the expansion (4-42) for ∈
looks like = ∑ , ∧ , where the coefficients form the alternating × matrix. The
Plücker relation corresponding to ( , , ) = ( , , ) and = is

− + = . (4-45)
All other choices of ( , , ) and ∉ { , , } lead to exactly the same relation.
Exercise 4.25. Check this.

For ∈ { , , } we get the trivial equality = . Thus, for dim = , the set of decomposable
grassmannian quadratic forms ∈ is described by just one quadratic equation (5-2).
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Exercise 4.26. Convince yourself that the equation (5-2) on = ∑ , ∧ is equivalent to
the condition ∧ = .
4.6.4 The Grassmannian varieties and Plücker embeddins. For a vector space of dimen-

sion , the set of all vector subspaces ⊂ of dimension is denoted by Gr( , ) and called
the grassmannian. When the origin of is not essential or = 𝕜 , we write Gr( , ) instead
of Gr( , ). Thus, Gr( , ) = ℙ( ), Gr(dim − , ) = ℙ( ∗). The grassmannian Gr( , ) is
embedded into the projective space ℙℙ( ) by means of the Plücker map

∶ Gr( , ) → ℙ( ) , ↦ ⊂ (4-46)

sending every subspace ⊂ of dimension to its highest exterior power , which is a sub-
space of dimension in . If is spanned by vectors , , … , , then up to proportionality,

( ) = ∧ ∧ ⋯ ∧ .
Exercise 4.27. Check that the Plücker map is injective.

The image of map (4-46) consists of all grassmannian polynomials ∈ completely factorisable
into a product of vectors. Such polynomials are called decomposable. By the Proposition 4.4 they
form a projective algebraic variety described by the system of quadratic equations (4-44) on the
coefficients of expansion (4-42).

Remark 4.1. From the algebraic viewpoint, the grassmannian variety Gr( , ) ⊂ ℙ( ) is a
super-commutative version of the Veronese variety ( , ) ⊂ ℙ( ). Both consist of most de-
generated non-zero homogeneous polynomials of degree in the sense that the linear support of
polynomial has the minimal possible dimension which equals for a commutative polynomial, and
equals for a grassmannian polynomial of degree .

Example 4.9 (the grassmannians Gr( , ))
The Plücker embedding identifies the grassmannian Gr( , ) with the set of decomposable grass-
mannian quadratic forms ∈ , that is, = ∧ for some , ∈ . Note that every such
has ∧ = ∧ ∧ ∧ = . For an arbitrary ∈ , there exists a basis , , … , in
such that1 = ∧ + ∧ + ⋯ . If this sum contains more than one term, then the monomial

∧ ∧ ∧ appears in ∧ with the coefficient and therefore, ∧ ≠ . Thus, such
is not decomposable. We conclude that ∈ is decomposable if and only if ∧ = .

For dim = , the squares of forms ∈ lie in the space of dimension . In this case,
the condition ∧ = for = ∑ , ∧ is expressed by just one quadratic equation

− + = , (4-47)

which agrees with the equation (5-2) from the Example 4.8 on p. 56. We conclude that the Plücker
embedding identifies the grassmannianGr( , ) = Gr( , )with the quadric (4-47) inℙ = ℙ( ).
This quadric is called the Plücker quadric.

Example 4.10 (The Segre varieties revisited2)
Let = ⊕ ⊕ ⋯ ⊕ be a direct sum of finite dimensional vector spaces . For every
collection of non-negative integers , , … , such that ⩽ dim , put = ∑ and

1See the Example 4.5 on p. 47.
2See n∘ 4.1.2 on p. 39.
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denote by , ,…, ⊂ the linear span of all products ∧ ∧ ⋯ ∧ formed by
vectors taken from , vectors taken from , etc.
Exercise 4.28. Show that the well defined isomorphism of vector spaces

⊗ ⊗ ⋯ ⊗ ⥲ , ,…,

is assigned by prescription ⊗ ⊗ ⋯ ⊗ ↦ ∧ ∧ ⋯ ∧ , and verify that

= ⨁
, ,…,

, ,…, ≃ ⨁
, ,…,

⊗ ⊗ ⋯ ⊗ .

We conclude that the tensor product ⊗ ⊗ ⋯ ⊗ can be identified with the component
, ,…, ⊂ . Under this identification, the decomposable tensors ⊗ ⊗ ⋯ ⊗ go to the

decomposable grassmannian monomials ∧ ∧ ⋯ ∧ . Therefore, the Segre variety from n∘ 4.1.2
on p. 39 is the intersection of the grassmannian variety Gr( , ) ⊂ ℙ( ) with the projective
subspace ℙ ( , ,…, ) ⊂ ℙ( ). In particular, the Segre variety is indeed an algebraic variety
described by the system of quadratic equations from the Proposition 4.4 on p. 56 restricted onto
the linear subspace , ,…, ⊂ .



Comments to some exercises

Exrc. 4.3. The first statement is verified by the same arguments as in ?? on p. ?? and n∘ 2.5.1.
To prove the second, chose some dual bases , , … , ∈ , ∗, ∗, … , ∗ ∈ ∗ and a basis

, , … , ∈ . Then decomposable tensors ∗ ⊗ form a basis in ∗ ⊗ . The matrix
of operator

∗ ⊗ ∶ ↦
{

for =
otherwise

� .

has in the crossing of th row with th column and zeros elsewhere. Thus, these operators span
Hom( , ).

Exrc. 4.4. For any linear mapping ∶ → the multiplication

× × ⋯ × → ,

which takes ( , , … , ) to their product ( ) ⋅ ( ) ⋅ ⋯ ⋅ ( ) ∈ , is multilinear. Hence,
for each ∈ ℕ there exists a unique linear mapping ⊗ → taking tensor multiplication to
multiplication in . Add them all together and get required algebra homomorphism T →
extending . Since any algebra homomorphism T → that extends has to take ⊗ ⊗ ⋯ ⊗

↦ ( ) ⋅ ( ) ⋅ ⋯ ⋅ ( ), it coincides with the extension just constructed. Uniqueness of
free algebra is proved exactly like the Lemma 4.1 on p. 39.

Exrc. 4.5. Since the decomposable tensors span ∗⊗ and the equality

( , , … , − ) = ( , , , … , − )

is bilinear in , , it is enough to check it for the decomposable = ⊗ ⊗ ⋯ ⊗ .
Exrc. 4.6. Fix a basis , … , , , … , , , … , , , … , in such that form a basis
in ∩ , and extend it to some bases in , , and complete everything to a basis in .
Then expand through the standard monomial basis of T built from this basis of .

Exrc. 4.8. Fo all , ∈ we have

= (… , ( + ), … , ( + ), …) = (… , , … , , …) + (… , , … , , …) .

Vice versa, if char 𝕜 ≠ , then (… , , … , , …) = − (… , , … , , …) forces

(… , , … , , …) = .

Exrc. 4.9. See, e.g., the Proposition 11.2 on p. 260 in the sec. 11.2.2 of the book: A. L. Gorodentsev,
Algebra I. Textbook for Students of Mathematics., Springer, 2016.

Exrc. 4.10. Every multilinear map ∶ × × ⋯ × → is uniquely decomposed as = ∘ ,
where ∶ ⊗ → is linear. Such is factorized through the projection ⊗ ↠ if and only
if

( ⋯ ⊗ ⊗ ⊗ ⋯ ) = ( ⋯ ⊗ ⊗ ⊗ ⋯ ) .

The latter is equivalent to ( … , , , … ) = ( … , , , … ). This proves the universality of
the multiplication in . Every linear map ∶ → induces the symmetric multilinear map

× × ⋯ × → , ( , , … , ) ↦ ∏ ( ) for any ∈ ℕ. The latter gives the linear map
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→ . All together these maps extend to the homomorphism of 𝕜-algebras → . Vice
versa, every homomorphism of 𝕜-algebras → , which extends , takes ∏ → ∏ ( ) and
coincides with the previous extension. The uniqueness of extension is verified as in the Lemma 4.1
on p. 39.

Exrc. 4.11. The first follows from = ( + ) ⊗ ( + ) = ⊗ + ⊗ , the second from
⊗ + ⊗ = .

Exrc. 4.12. Similar to ?? on p. ??.
Exrc. 4.13. If dim = , then ( ) = +⨁ . For even , the first summand is contained
in the second, for odd the sum is direct.

Exrc. 4.15. Use that det = det , and transpose everything.
Exrc. 4.16. The summands form one -orbit. The stabilizer of an element in this orbit consists of

! ! ⋯ ! independent permutations of coinciding factors. Hence, the length of orbit equals
!

! !⋯ ! .
Exrc. 4.17. For = ∑ , the complete contraction of ⊗ with ̃ = !⋅ !⋯ !

! [ , ,…, ]
is the sum of !∕( ! ⋅ ! ⋯ ! ) mutually equal products

! ⋅ ! ⋯ !
! ⋅ ( ) ⋅ ( ) ⋅ ⋯ ⋅ ( ) = ! ⋅ ! ⋯ !

! ⋅ ⋯ .

Thus, it coincides with the result of substitution ( , , … , ) = ( , , … , ) in the monomial
!

! !⋯ ! ⋯ .
Exrc. 4.18. Use the same arguments as in the proof of multinomial expansion formula

( + + ⋯ + ) = ∑
…

!
! ! ⋯ ! ⋅ ⋯ .

Exrc. 4.20. Since the Leibniz rule is linear in , , , it is enough to check it for = , =
… , = … . In this case it follows directly from the definition of polar map. The

formula for (̃ , , … , ) follows from the equality (̃ , , … , ) = ⋅ ( ) by induction
in = deg .

Exrc. 4.23. Similar to the Exercise 4.20.
Exrc. 4.24. Let , , … , be a basis in . If ∉ , then the expansion of as a linear
combination of basis monomials contains a monomial whose index differs from the whole

, , … , . Let ∉ . Then ∧ ≠ , because the basis monomial { }⊔ appears in ∧
with a nonzero coefficient. Conversely, if ∈ , then = ⋅ ∧ ∧ ⋯ ∧ and ∧ =
for all .

Exrc. 4.26. See the Example 4.9 on p. 57.
Exrc. 4.27. Let ≠ be two subspaces of dimension . Chose a basis

, , … , , , , … , − , , , … , − , , , … , + − ∈

such that , , … , is a basis of ∩ , vectors , , … , − and , , … , − complete
it to bases in and respectively, and the remaining vectors are complementary to + . The
Plücker embedding (??) sends and to the different basis monomials

∧ ⋯ ∧ ∧ ∧ ⋯ ∧ − ≠ ∧ ⋯ ∧ ∧ ∧ ⋯ ∧ −

in .
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