§3 Working examples: lines and conics on the plane

3.1 Homographies. A linear projective isomorphism between two projective lines is called a homography. An important example of homography is provided by a perspective $o: \ell_{1} \leadsto \ell_{2}$, the central projection of a line $\ell_{1} \subset \mathbb{P}_{2}$ to another line $\ell_{2} \subset \mathbb{P}_{2}$ from a point $o \notin \ell_{1} \cup \ell_{2}$, see fig. $3 \diamond 1$.

EXERCISE 3.1. Make sure that a perspective is a homography.

Fig. $\mathbf{3} \diamond 1$. The perspective $o: \ell_{1} \xrightarrow{\sim} \ell_{2}$.

A homography $\varphi: \ell_{1} \leadsto \ell_{2}$ is a perspective if and only if it sends the intersection point $\ell_{1} \cap \ell_{2}$ to itself. Indeed, choose two distinct points $a, b \in \ell_{1} \backslash \ell_{2}$ and put $o=(a \varphi(a)) \cap(b \varphi(b))$ as on fig. $3 \diamond 1$. Then the perspective $o: \ell_{1} \xrightarrow{\sim} \ell_{2}$ sends the points $a, b, \ell_{1} \cap \ell_{2}$ to $\varphi(a), \varphi(b), \ell_{1} \cap \ell_{2}$. Thus, it coincides with φ if and only if φ maps the intersection of lines to itself.
3.1.1 The cross-axis. Given two lines $\ell_{1}, \ell_{2} \subset \mathbb{P}_{2}$ intersecting at the point $q=\ell_{1} \cap \ell_{2}$, then for any line $\ell \subset \mathbb{P}_{2}$ and points $b_{1} \in \ell_{1}, b_{2} \in \ell_{2}$ the composition of perspectives

$$
\begin{equation*}
\left(b_{1}: \ell \rightarrow \ell_{2}\right) \circ\left(b_{2}: \ell_{1} \rightarrow \ell\right) \tag{3-1}
\end{equation*}
$$

takes $b_{1} \mapsto b_{2}, \ell_{1} \cap \ell \mapsto q, q \mapsto \ell_{2} \cap \ell$, see fig. $3 \diamond 2$.

Fig. $3 \diamond 2$. The cross-axis of a homography.

Every homography $\varphi: \ell_{1} \xrightarrow{\rightarrow} \ell_{2}$ admits a decomposition (3-1) in which the point $b_{1} \in \ell_{1}$ can be chosen arbitrarily, $b_{2}=\varphi\left(b_{1}\right)$, and the line ℓ is uniquely predicted by φ and does not depend on the choice of $b_{1} \in \ell_{1}$. Indeed, fix some distinct points $a_{1}, b_{1}, c_{1} \in \ell_{1} \backslash \ell_{2}$ and write $a_{2}, b_{2}, c_{2} \in \ell_{2}$ for their images under φ. Put ℓ as the line joining the cross-intersections ($a_{1} b_{2}$) $\cap\left(b_{1} a_{2}\right)$ and $\left(c_{1} b_{2}\right) \cap\left(b_{1} c_{2}\right)$. Then the composition (3-1) sends a_{1}, b_{1}, c_{1} to a_{2}, b_{2}, c_{2} and therefore coincides with φ, see fig. $3 \diamond 2$. If we repeat this argument for the ordered triple c_{1}, a_{1}, b_{1} instead of a_{1}, b_{1}, c_{1}, then we get the decomposition $\varphi=\left(a_{1}: \ell^{\prime} \rightarrow \ell_{2}\right) \circ\left(a_{2}: \ell^{\prime} \rightarrow \ell\right)$, where ℓ^{\prime} joins the cross-intersections $\left(a_{1} c_{2}\right) \cap\left(c_{1} a_{2}\right)$ and $\left(b_{1} a_{2}\right) \cap\left(a_{1}, b_{2}\right)$, see fig. $3 \diamond 3$. Since both lines ℓ, ℓ^{\prime} pass through the points ${ }^{1}\left(b_{1} a_{2}\right) \cap\left(a_{1}, b_{2}\right), \varphi(q), \varphi^{-1}(q)$, we conclude that $\ell=\ell^{\prime}$. Hence, all the crossintersections $(x, \varphi(y)) \cap(y, \varphi(x))$, where $x \neq y$ are running through ℓ_{1}, lie on the same line ℓ, which is uniquely determined by this property.

Fig. 3 \triangleleft. Coincidence $\ell^{\prime}=\ell$.
DEFINITION 3.1 (THE CROSS-AXIS OF HOMOGRAPHY)
Given a homography $\varphi: \ell_{1} \xrightarrow{\sim} \ell_{2}$, the line ℓ drown by cross-intersections $(x, \varphi(y)) \cap(y, \varphi(x))$ as $x \neq y$ run through ℓ_{1} is called the cross-axis of φ.

REMARK 3.1. The cross-axis of non-perspective homography $\varphi: \ell_{1} \xrightarrow{\rightarrow} \ell_{2}$ is well defined as the line joining $\varphi\left(\ell_{1} \cap \ell_{2}\right)$ and $\varphi^{-1}\left(\ell_{1} \cap \ell_{2}\right)$, which are distinct. If φ is a perspective, then the point $\varphi\left(\ell_{1} \cap \ell_{2}\right)=\varphi^{-1}\left(\ell_{1} \cap \ell_{2}\right)=\ell_{1} \cap \ell_{2}$ still lies on the cross-axis but does not fix it uniquely.

EXERCISE 3.2. Let a homography $\varphi: \ell_{1} \leadsto \ell_{2}$ send 3 given points $a_{1}, b_{1}, c_{1} \in \ell_{1}$ to 3 given points $a_{2}, b_{2}, c_{2} \in \ell_{2}$. Using only the ruler, construct $\varphi(x)$ for a given $x \in \ell_{1}$.

LEMMA 3.1

Let \mathbb{k} be an algebraically closed field of zero characteristic. If a bijection

$$
\varphi: \mathbb{P}_{1}(\mathbb{k}) \backslash\{\text { finite set of points }\} \stackrel{\sim}{\rightarrow} \mathbb{P}_{1}(\mathbb{k}) \backslash\{\text { finite set of points }\}
$$

can be described in some affine chart with a local coordinate t by a formula

$$
\begin{equation*}
\varphi: t \mapsto \varphi_{0}(t) / \varphi_{1}(t), \quad \text { where } \varphi_{0}, \varphi_{1} \in \mathbb{k}[t], \tag{3-2}
\end{equation*}
$$

then φ is the restriction of a unique homography $\mathbb{P}_{1} \xrightarrow{\rightarrow} \mathbb{P}_{1}$.

[^0]Proof. In the homogeneous coordinates $\left(x_{0}: x_{1}\right)$ such that $t=x_{0} / x_{1}$, the formula (3-2) can be rewritten ${ }^{1}$ as $\varphi:\left(x_{0}: x_{1}\right) \mapsto\left(f_{0}\left(x_{0}, x_{1}\right): f_{1}\left(x_{0}, x_{1}\right)\right)$, where $f_{0}, f_{1} \in \mathbb{k}\left[x_{0}, x_{1}\right]$ are nonproportional homogeneous polynomials of the same degree d. Write \mathbb{P}_{d} for the projectivization of space of homogeneous polynomials of degree d in x_{0}, x_{1}. As soon a point $\vartheta=\left(\vartheta_{0}: \vartheta_{1}\right) \in \mathbb{P}_{1}$ has a unique preimage under φ, the polynomial $h_{\vartheta}\left(x_{0}, x_{1}\right)=\vartheta_{1} f\left(x_{0}, x_{1}\right)-\vartheta_{0} g\left(x_{0}, x_{1}\right)$ has just one root in \mathbb{P}_{1}. Since \mathbb{k} is algebraically closed, h_{ϑ} is the proper d th power of a linear form, that is, lies on the Veronese curve ${ }^{2} C_{d} \subset \mathbb{P}_{d}$. On the other hand, the polynomial h_{ϑ} runs through the line $\left(f_{0}, f_{1}\right) \subset \mathbb{P}_{d}$ as ϑ runs through \mathbb{P}_{1}. Since $\mathbb{P}_{1}(\mathbb{k})$ is infinite, we conclude that the Veronese curve has infinitely many intersections with the line $\left(f_{0}, f_{1}\right)$. But for $d \geqslant 2$, any 3 distinct points of C_{d} are non-collinear ${ }^{3}$. Hence, $d=1$ and $\varphi \in \operatorname{PGL}_{2}(\mathbb{k})$.
3.1.2 Homographies provided by conics. Let a homography $\varphi: \ell_{1} \xrightarrow{\sim} \ell_{2}$ send an ordered triple of distinct points $a_{1}, b_{1}, c_{1} \in \ell_{1}, \ell_{2}$ to $a_{2}, b_{2}, c_{2} \in \ell_{2}$. If the lines $\left(a_{1} a_{2}\right),\left(b_{1} b_{2}\right),\left(c_{1} c_{2}\right)$ meet all together at some point p, then φ coincides with the perspective $p: \ell_{1} \xrightarrow{\sim} \ell_{2}$, and this happens if and only if $\varphi(q)=q$, see fig. $3 \diamond 4$.

Fig. 3 4. Perspective $p: \ell_{1} \rightarrow \ell_{2}$.

Fig. 3 \triangleleft. Homography $C: \ell_{1} \rightarrow \ell_{2}$.

If the lines $\left(a_{1} a_{2}\right),\left(b_{1} b_{2}\right),\left(c_{1} c_{2}\right)$ are not concurrent, then any 3 of the 5 lines $\ell_{1}, \ell_{2},\left(a_{1}, a_{2}\right)$, $\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)$ are not concurrent, and there exists a unique smooth conic C touching all these 5 lines by the Corollary 2.4 on p. 21, see fig. $3 \diamond 5$. In this case, the homography φ is provided by the tangent lines to C, i.e., $y=\varphi(x)$ if and only if the line $(x y)$ is tangent to C. Indeed, the map $C: \ell_{1} \rightarrow \ell_{2}$, which sends $x \in \ell_{1}$ to the intersection point of ℓ_{2} with the tangent line from x to C other than ℓ_{1}, is obviously bijective.

EXERCISE 3.3. Convince yourself that this map satisfies the Lemma 3.1.
We conclude that $C: \ell_{1} \rightarrow \ell_{2}$ is a homography that acts on a_{1}, b_{1}, c_{1} exactly as φ.
Thus, every homography $\varphi: \ell_{1} \xrightarrow{\sim} \ell_{2}$ is either a perspective $p: \ell_{1} \xrightarrow{\sim} \ell_{2}$ provided by some point $p \notin \ell_{1} \cup \ell_{2}$ or a homography $C: \ell_{1} \rightarrow \ell_{2}$ provided by a smooth conic C touching the both lines ℓ_{1}, ℓ_{2}. In both cases, the point p and conic C are uniquely predicted by φ. The perspective $p: \ell_{1} \xrightarrow{\rightarrow} \ell_{2}$ can be treated as a degeneration of the non-perspective homography $C: \ell_{1} \xrightarrow{\sim} \ell_{2}$ arising when C splits in two lines crossing at the centre of perspective. However these two lines can

[^1]be chosen in many ways: any two lines joining the corresponding points are fitted in the picture. Note also that the image and preimage of $\ell_{1} \cap \ell_{2}$ under the homography $C: \ell_{1} \xrightarrow{\rightarrow} \ell_{2}$ are the points of contact $\ell_{2} \cap C$ and $\ell_{1} \cap C$ respectively.

PROPOSITION 3.1 (INSCRIBED-CIRCUMSCRIBED TRIANGLES)

Two triangles $\Delta a_{1} b_{1} c_{1}$ and $\Delta a_{2} b_{2} c_{2}$ are both inscribed in some smooth conic Q^{\prime} if and only if they are both circumscribed about some smooth conic $Q^{\prime \prime}$.

Proof. Let 6 points $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}$ lie on a smooth conic Q^{\prime} like in fig. $3 \diamond 6$. Put $\ell_{1}=\left(a_{1} b_{1}\right)$, $\ell_{2}=\left(a_{2} b_{2}\right)$ and write $c_{2}: \ell_{1} \xrightarrow{\sim} Q^{\prime}$ for the projection of ℓ_{1} onto Q^{\prime} from c_{1} and $c_{1}: Q^{\prime} \xrightarrow{\sim} \ell_{2}$ for the projection of Q^{\prime} onto ℓ_{2} from c_{2}. The composition [$\left.c_{1}: Q^{\prime} \xrightarrow{\sim} \ell_{2}\right] \circ\left[c_{2}: \ell_{1} \xrightarrow{\sim} Q^{\prime}\right]: \ell_{1} \xrightarrow{\sim} \ell_{2}$ is a non-perspective homography sending $a_{1} \mapsto p, q \mapsto b_{2}, r \mapsto a_{2}, b_{1} \mapsto s$. Let $Q^{\prime \prime}$ be a smooth conic whose tangent lines join the homographic points. Then $Q^{\prime \prime}$ is obviously inscribed in the both triangles. The opposite implication is projectively dual to just proven.

Fig. 3 \diamond 6. Inscribed circumscribed triangles.

COROLLARY 3.1 (PONCELET'S PORISM FOR TRIANGLES)

Assume that a triangle $\Delta a_{1} b_{1} c_{1}$ is simultaneously inscribed in a smooth conic Q^{\prime} and circumscribed about a smooth conic $Q^{\prime \prime}$. Then every point of Q^{\prime} except for a finite set is a vertex of triangle simultaneously inscribed in Q^{\prime} and circumscribed about $Q^{\prime \prime}$.

PRoof (see fig. $3 \diamond 6$). For any $a_{2}, b_{2}, c_{2} \in Q^{\prime}$ such that ($a_{2} b_{2}$), ($a_{2} c_{2}$) are two different tangent lines to $Q^{\prime \prime}$, the triangles $\Delta a_{1} b_{1} c_{1}$ and $\Delta a_{2} b_{2} c_{2}$ are both circumscribed about some smooth conic C by the Proposition 3.1. Since C touches 5 lines $\left(a_{1} b_{1}\right),\left(b_{1} c_{1}\right),\left(c_{1} a_{1}\right),\left(a_{2} b_{2}\right),\left(a_{2} c_{2}\right)$, it coincides with $Q^{\prime \prime}$ by the Corollary 2.4 on p. 21.
3.1.3 Homographic pencils of lines. Projectively dual version of the construction from n° 3.1.2 deals with a homography $\varphi: p_{1}^{\times} \xrightarrow{\sim} p_{2}^{2}$ between two pencils of lines in \mathbb{P}_{2} passing through the points p_{1} and p_{2} respectively. Let φ sent 3 distinct lines $\ell_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{3}^{\prime} \ni p_{1}$ other than ($p_{1} p_{2}$) to the lines $\ell_{1}^{\prime \prime}, \ell_{2}^{\prime \prime}, \ell_{3}^{\prime \prime} \ni p_{1}$. Write $q_{i}=\ell_{i}^{\prime} \cap \ell_{i}^{\prime \prime}, i=1,2,3$, for the intersection points of corresponding lines. Since every 4 points from $p_{1}, p_{2}, q_{1}, q_{2}, q_{3}$ are non-collinear, there exists the unique conic
C_{φ} passing through these 5 points, see fig. $3 \diamond 7$ and fig. $3 \diamond 8$ below. Provided by this conic is the homography $C: p_{1}^{\times} \xrightarrow{\rightarrow} p_{2}^{\times}$sending $\left(p_{1} p\right) \mapsto\left(p_{2} p\right)$ for all $p \in C_{\varphi}$.

EXERCISE 3.4. Use the Lemma 3.1 on p. 26 to convince yourself that this map is actually a homography.

Fig. 3 \triangleleft. Perspective homography

$$
\varphi: p_{1}^{\times} \rightarrow p_{2}^{\times}
$$

Fig. $3 \diamond 8$. Non-perspective homography

$$
\varphi: p_{1}^{\times} \rightarrow p_{2}^{\times}
$$

Since this homography takes $\ell_{i}^{\prime} \mapsto \ell_{i}^{\prime \prime}$ for $i=1,2,3$, it coincides with φ, see. fig. $3 \diamond 8$. The homography provided by a smooth conic C_{φ} takes $T_{p_{1}} C_{\varphi} \mapsto\left(p_{1} p_{2}\right)$ and $\left(p_{1} p_{2}\right) \mapsto T_{p_{2}} C_{\varphi}$. The conic C_{φ} splits if and only if the points q_{1}, q_{2}, q_{3} are collinear or, equivalenly, when the line ($p_{1} p_{2}$) goes to itself. In this case $C_{\varphi}=\left(p_{1} p_{2}\right) \cup\left(q_{i} q_{j}\right)$ and the homography is a perspective, see fig. $3 \diamond 7$. In a contrast with $n^{\circ} 3.1 .2$, the split conic C_{φ} is uniquely determined by the perspective φ in this case.

EXAMPLE 3.1 (TRACING CONIC BY THE RULER)

Let C be a conic drawn through 5 given points $p_{1}, p_{2}, \ldots, p_{5}$ no 3 of which are collinear. The points of C can be constructed by the ruler as follows. Draw the lines $\ell_{1}=\left(p_{2} p_{5}\right), \ell_{2}=\left(p_{2} p_{4}\right)$ and mark the point $p=\left(p_{1} p_{4}\right) \cap\left(p_{3} p_{5}\right)$, see fig. $3 \diamond 9$.

Fig. $3 \diamond 9$. Tracing a conic by a ruler.
The perspective $p: \ell_{1} \leadsto \ell_{2}$ is decomposed as the projection $p_{1}: \ell_{1} \xrightarrow{\sim} C$ of ℓ_{1} onto C from p_{1} followed by projection $p_{3}: C \xrightarrow{\sim} \ell_{2}$ from C onto ℓ_{2} from p_{3}.

EXERCISE 3.5. Check this by comparing the action on points $p_{2}, p_{5}, q \in \ell_{1}$, see fig. $3 \diamond 9$.

Thus, for any line $\ell \ni p$, the lines joining p_{1}, p_{2} with the intersection points $x_{1}=\ell \cap \ell_{1}, x_{2}=\ell \cap \ell_{2}$ are crossing at the point $c(\ell)=\left(p_{1} x_{1}\right) \cap\left(p_{2} x_{2}\right) \in C$, see fig. $3 \diamond 9$. As ℓ turns about p, the point $c(\ell)$ draws the conic C.

THEOREM 3.1 (PASCAL'S THEOREM)

Six points $p_{1}, p_{2}, \ldots, p_{6}$ no 3 of which are collinear lie on a smooth conic if and only if 3 intersection points ${ }^{1} \quad x=\left(p_{3} p_{4}\right) \cap\left(p_{6} p_{1}\right), \quad y=\left(p_{1} p_{2}\right) \cap\left(p_{4} p_{5}\right), \quad z=\left(p_{2} p_{3}\right) \cap\left(p_{5} p_{6}\right) \quad$ are collinear.

Fig. $\mathbf{3} \triangleleft \mathbf{1 0}$. The hexogram of Pascal.

Proof. Let $\ell_{1}=\left(p_{3} p_{4}\right), \ell_{2}=\left(p_{3} p_{2}\right)$, see fig. $3 \diamond 10$. Assume that $z \in(x y)$. Then the perspective $y: \ell_{1} \rightarrow \ell_{2}$ takes $x \mapsto z$ and is decomposed ${ }^{2}$ as $\left(p_{5}: C \xrightarrow{\rightarrow} \ell_{2}\right) \circ\left(p_{1}: \ell_{1} \xrightarrow{\rightarrow} C\right)$, where C is the smooth conic passing trough $p_{1}, p_{2}, \ldots, p_{5}$. Thus, $p_{6}=\left(p_{5} z\right) \cap\left(p_{3} x\right) \in C$. Conversely, if $\left(p_{5} z\right) \cap\left(p_{3} x\right) \in C$, then the above composition takes $x \mapsto z$. Hence, the perspective $y: \ell_{1} \rightarrow \ell_{2}$ also sends $x \mapsto z$ forcing $z \in(x y)$.

Fig. $\mathbf{3} \diamond 11$. Inscribed hexagon.

Fig. 3 12. Circumscribed hexagon.

COROLLARY 3.2 (BRIANCHON'S THEOREM)

A hexagon $p_{1}, p_{2}, \ldots, p_{6}$ is circumscribed about a non-singular conic if and only if «the main diagonals» $\left(p_{1} p_{4}\right),\left(p_{2} p_{5}\right),\left(p_{3} p_{6}\right)$ are concurrent, see fig. $3 \diamond 12$.

Proof. This is dual to the Theorem 3.1, comp. fig. $3 \diamond 11$ and fig. $3 \diamond 12$.

[^2]3.2 Internal geometry of a smooth conic. In this section we assume on default that the ground field \mathbb{k} is algebraically closed and char $(\mathbb{k}) \neq 2$. Dual projective lines $\mathbb{P}_{1}=\mathbb{P}(U), \mathbb{P}_{1}^{x}=\mathbb{P}\left(U^{*}\right)$ are naturally identified by the canonical homography provided by projective duality:
\[

$$
\begin{equation*}
\delta: \mathbb{P}_{1} \xrightarrow{\leadsto} \mathbb{P}_{1}^{\times}, \quad v \mapsto \operatorname{Ann} v . \tag{3-3}
\end{equation*}
$$

\]

In coordinates, it takes a point $\left(p_{0}: p_{1}\right) \in \mathbb{P}_{1}$ to the linear form $\operatorname{det}(p, t)=p_{0} t_{1}-p_{1} t_{0}$, whose coordinates in the dual basis of \mathbb{P}_{1}^{\times}are $\left(-p_{1}: p_{0}\right)$. The plane $\mathbb{P}_{2}=\mathbb{P}\left(S^{2} U^{*}\right)$ can be thought ${ }^{1}$ of as the space of non-ordered pairs of possibly coinciding points in $\mathbb{P}_{1}=\mathbb{P}(U)$ by mapping a pair of points $p=\left(p_{0}: p_{1}\right), q=\left(q_{0}: q_{1}\right)$ on \mathbb{P}_{1} to the binary quadratic form with roots $\{p, q\}$:

$$
\begin{align*}
f_{p q}\left(t_{0}, t_{1}\right) & =\operatorname{det}\left(\begin{array}{ll}
p_{0} & t_{0} \\
p_{1} & t_{1}
\end{array}\right) \operatorname{det}\left(\begin{array}{ll}
q_{0} & t_{0} \\
q_{1} & t_{1}
\end{array}\right)= \tag{3-4}\\
& =p_{0} q_{0} \cdot t_{0}^{2}-\left(p_{0} q_{1}+p_{1} q_{0}\right) \cdot t_{0} t_{1}+p_{1} q_{1} \cdot t_{1}^{2} \in S^{2} U^{*}
\end{align*}
$$

We will often misuse the notations and write $\{p, q\} \in \mathbb{P}_{2}$ for the quadratic form (3-4). Pairs $\{p, t\} \in \mathbb{P}_{2}$, where $p \in \mathbb{P}_{1}$ is fixed and t runs through \mathbb{P}_{1}, form a line in \mathbb{P}_{2}. This line consists of all $f \in S^{2}\left(U^{*}\right)$ such that $f(p)=0$. Pairs of coinciding points $\{p, p\} \in \mathbb{P}_{2}$ form the smooth Veronese conic $C \subset \mathbb{P}_{2}$. The above line $\{p, t\}$ is tangent to C at the point $\{p, p\}$, certainly. Thus, the pair of tangent lines to C drown through a point $\{p, q\} \notin C$ is formed by $\{p, t\},\{q, t\}$, where $t \in \mathbb{P}_{1}$, which meet C at the points $\{p, p\},\{q, q\}$.

The Veronese conic stays in the natural bijection with \mathbb{P}_{1} provided by the Veronese map ${ }^{2}$

$$
\mathbb{P}_{1} \hookrightarrow \mathbb{P}_{2}, \quad p \mapsto\{p, p\}
$$

In coordinates, it takes a point $\left(p_{0}: p_{1}\right) \in \mathbb{P}_{1}$ to the binary quadratic form $x_{0} t_{0}^{2}+2 x_{1} t_{0} t_{1}+x_{2} t_{2}^{2}$ with coefficients

$$
\begin{equation*}
\left(x_{0}: x_{1}: x_{2}\right)=\left(p_{0}^{2}:-p_{0} p_{1}: p_{1}^{2}\right) \tag{3-5}
\end{equation*}
$$

We refer the ratio ($p_{0}: p_{1}$) as the internal homogeneous coordinate of the point $\{p, p\}$ on the Veronese conic, and define the cross-ratio of four points $\left\{p_{i}, p_{i}\right\}, i=1, \ldots, 4$, on C as $\left[p_{1}, p_{2}, p_{3}, p_{4}\right]$ on \mathbb{P}_{1}. Note that the internal homogeneous coordinates on C are predicted by a choice of basis in \mathbb{P}_{1} whereas the cross-ratio does not depend on a choice of coordinates.

As soon \mathbb{k} is algebraically closed and char $\mathbb{k} \neq 2$, every smooth conic D on the plane can be identified with the Veronese conic C by means of linear projective automorphism of the plane. This allows to introduce internal homogeneous coordinates and the cross-ratio on D. We would like to verify that different choices of the linear projective automorphism $\varphi: \mathbb{P}_{2} \xrightarrow{\rightarrow} \mathbb{P}_{2}$ such that $\varphi(D)=$ $=C$ do not change the cross-ratio and lead to invertible linear changes of the internal homogeneous coordinates. To this aim, let us redefine the cross-ratio more geometrically.

DEFINITION 3.2 (THE CROSS-RATIO ON A SMOOTH CONIC)

Given an ordered quadruple of different points $a_{1}, a_{2}, a_{3}, a_{4}$ on a smooth conic D, consider a point $c \in D$ other than given. The cross-ratio of lines $\left[\left(c a_{1}\right),\left(c a_{2}\right),\left(c a_{3}\right),\left(c a_{4}\right)\right]$ in the pencil c^{\times}of lines passing through c is called the cross-ratio of points a_{i} on D.

[^3]EXERCISE 3.6. Prove that the cross-ratio does not depend on the choice of c and is preserved by linear projective automorphisms of the plane.
Since the parameterization (3-5) of the Veronese conic $C: x_{0} x_{2}=x_{1}^{2}$ can be obtained by composing the projection ${ }^{1} a: \ell \leadsto C$ of the line $\ell: x_{2}=0$ onto C from the point $a=(0: 0: 1) \in C$

EXERCISE 3.7. Verify that this projection takes $\left(p_{0}: p_{1}: 0\right) \mapsto\left(p_{0}^{2}: p_{0} p_{1}: p_{1}^{2}\right)$.
with the homography $\ell \xrightarrow{\sim} \ell,\left(p_{0}: p_{1}: 0\right) \mapsto\left(p_{0}:-p_{1}: 0\right)$, the Definition 3.2 agrees with the previous definition of homogeneous coordinates and cross-ratio on the Veronese conic.

Proposition 3.2
The smooth conic D passing through 5 points $p_{1}, p_{2}, \ldots, p_{5}$ no 3 of which are collinear consists of all the points $p \in \mathbb{P}_{2}$ such that $\left[\left(p p_{1}\right),\left(p p_{2}\right),\left(p p_{3}\right),\left(p p_{4}\right)\right]=\left[\left(p_{5} p_{1}\right),\left(p_{5} p_{2}\right),\left(p_{5} p_{3}\right),\left(p_{5} p_{4}\right)\right]$.

Proof. It follows from the Exercise 3.7 that the equality between cross-ratios holds for all points $p \in D$. Consider any point $p \in \mathbb{P}_{2}$ for which the equality holds, and write Q for the conic passing through $p, p_{1}, p_{2}, p_{3}, p_{5}$. Provided by Q is the homography ${ }^{2} Q: p^{\times} \rightarrow p_{5}^{\times}$sending a line $(p q)$ to the line $\left(p_{5} q\right)$ for all $q \in Q$. It takes $\left(p p_{i}\right) \mapsto\left(p_{5} p_{i}\right)$ for $i=1,2,3$. Since $\left[\left(p p_{1}\right),\left(p p_{2}\right),\left(p p_{3}\right),\left(p p_{4}\right)\right]=\left[\left(p_{5} p_{1}\right),\left(p_{5} p_{2}\right),\left(p_{5} p_{3}\right),\left(p_{5} p_{4}\right)\right]$, the line $\left(p p_{4}\right)$ goes to the line $\left(p_{5} p_{4}\right)$. Hence, $p_{4} \in Q$ and therefore $Q=D$, because D is the only conic passing through $p_{1}, p_{2}, \ldots, p_{5}$. Thus, $p \in D$.

EXERCISE 3.8. Given 5 points $p, q, a, b, c \in \mathbb{P}_{2}$ any 3 of which are non-collinear, consider the homography of pencils $\gamma: p^{\times} \rightarrow q^{\times}$sending the lines $(p a),(p b),(p c)$ to the lines $(q a),(q b)$, ($q c$). Describe the locus of intersection points $\ell \cap \gamma(\ell)$ for $\ell \in p^{\times}$.
3.2.1 Homographies on a smooth conic. A bijection $\varphi: C \xrightarrow{\rightarrow} C$ provided by an invertible linear change of internal homogeneous coordinates on a smooth conic C is called a homography. It follows from the Lemma 3.1 on p. 26 that every rational bijection of the form

$$
\begin{gather*}
\varphi: C \backslash\{\text { finite set of points }\} \xrightarrow{\leadsto} C \backslash\{\text { finite set of points }\} \tag{3-6}\\
\left(t_{0}: t_{1}\right) \mapsto\left(f_{0}\left(t_{0} / t_{1}\right): f_{1}\left(t_{0} / t_{1}\right)\right), \tag{3-7}
\end{gather*}
$$

where $f_{0}, f_{1} \in \mathbb{k}\left[t_{0}, t_{1}\right]$, is the restriction of unique homography $C \xrightarrow{\sim} C$. For any two ordered triples of distinct points on C there exists a unique homography sending one triple to the other. A bijection $C \xrightarrow{\leftrightharpoons} C$ is a homography if and only if it preserves the cross-ratio on C.

PROPOSITION 3.3

Every homography $\gamma: C \xrightarrow{\sim} C$ on a smooth conic $C \subset \mathbb{P}_{2}$ admits the unique extension to a linear projective automorphism $\tilde{\gamma}: \mathbb{P}_{2} \xrightarrow{\rightarrow} \mathbb{P}_{2}$ of the plane. Conversely, any linear projective automorphism $\varphi: \mathbb{P}_{2} \leadsto \mathbb{P}_{2}$ such that $\varphi(C)=C$ induces the homography $\left.\varphi\right|_{C}: C \xrightarrow{\rightarrow} C$.

Proof. Chose 5 distinct points $p_{1}, p_{2}, \ldots, p_{5} \in C$, let $\gamma: C \xrightarrow{\sim} C$ be a homography, and put $q_{i}=\gamma\left(p_{i}\right)$. There exists a unique linear projective automorphism $\widetilde{\gamma}: \mathbb{P}_{2} \leadsto \mathbb{P}_{2}$ such that $\widetilde{\gamma}\left(p_{i}\right)=q_{i}$ for $1 \leqslant i \leqslant 4$. Since $\widetilde{\gamma}$ preserves the cross-ratio in the corresponding pencils of lines, the cross-ratio of lines $\left(q_{5}, q_{i}\right), 1 \leqslant i \leqslant 4$, in the pencil q_{5}^{\times}equals the cross-ratio of lines $\left(p_{5}, p_{i}\right), 1 \leqslant i \leqslant 4$, in the pencil p_{5}^{\times}. Since the latter equals the cross-ratio of lines $\left(p_{5}, q_{i}\right), 1 \leqslant i \leqslant 4$, in the same pencil,

[^4]because $\gamma: C \xrightarrow{\sim} C$ is the homography and preserves the cross-ratio on C. Thus, for any 5 points $p_{1}, p_{2}, \ldots, p_{5} \in C$ the cross-ratios of lines passing through $p_{1}, p_{2}, p_{3}, p_{4}$ in the pencils p_{5}^{\times}and $\widetilde{\gamma}\left(p_{5}\right)^{\times}$coincide. Hence, $\widetilde{\gamma}\left(p_{5}\right) \in C$ by the Proposition 3.2. The converse statement follows from the Exercise 3.6.

EXAMPLE 3.2 (INVOLUTIONS)

A self-inverse homography $\sigma: C \rightarrow C, \sigma^{2}=\mathrm{Id}_{C}$, is called an involution of the conic C. The identity involution $\sigma=\mathrm{Id}_{C}$ is referred to as trivial.

Let an involution $\sigma: C \rightarrow C$ interchange a^{\prime} with $a^{\prime \prime}$ and b^{\prime} with $b^{\prime \prime}$ for some mutually different points $a^{\prime}, a^{\prime \prime}, b^{\prime}, b^{\prime \prime} \in C$, as on fig. $3 \diamond 13$. Consider the intersection point $s=\left(a^{\prime} a^{\prime \prime}\right) \cap\left(b^{\prime} b^{\prime \prime}\right)$. Provided by s is the involution $\sigma_{s}: C \xrightarrow{\leftrightharpoons} C$ swapping the pair of intersection points $\ell \cap C$ on every line $\ell \ni s$.

EXERCISE 3.9. Convince yourself that the map σ_{s} satisfies the conditions of the Lemma 3.1 on p. 26, and therefore it is a homography.
Since the actions of σ_{s} and σ on 4 points $a^{\prime}, a^{\prime \prime}, b^{\prime}, b^{\prime \prime}$ coincide, $\sigma=\sigma_{s}$. In particular, every non-trivial involution has exactly two distinct fixed points ${ }^{1}$, the points of contact of two tangent lines to C coming from s. If C is identified with the Veronese

Fig. $3 \diamond 13$. Involution of conic. conic, the fixed points of involution $\sigma_{p, q}$ are $\{p, p\}$ and $\{q, q\}$. We conclude that every involutive homography $\gamma: \mathbb{P}_{1} \rightarrow \mathbb{P}_{1}$ over algebraically closed field has exactly two distinct fixed points $p, q \in \mathbb{P}_{1}$, and $\gamma(a)=b$ if and only if the points $\{a, a\},\{b, b\},\{p, q\}$ are collinear in \mathbb{P}_{2}.

EXERCISE 3.10. Verify that the latter is equivalent to the harmonicity $[p, q, a, b]=-1$.

Fig. $3 \diamond 14$. The cross-axis of a homography on conic.
3.2.2 The cross-axis of a homography on conic. A homography $\varphi: C \xrightarrow{\sim} C$ sending a_{1}, b_{1}, c_{1} to $a_{2}, b_{2}, c_{2} \in C$ is decomposed as projection $b_{2}: C \rightarrow \ell$ followed by projection $b_{1}: \ell \rightarrow C$, where ℓ is the line joining cross-intersections ($\left.a_{1} b_{2}\right) \cap\left(b_{1} a_{2}\right)$ and $\left(c_{1} b_{2}\right) \cap\left(b_{1} c_{2}\right)$, see fig. $3 \diamond 14$. Since the intersection points $\ell \cap C$ are exactly the fixed points ${ }^{2}$ of φ, the line ℓ is uniquely predicted by φ

[^5]and does not depend on the choice of points $a_{1}, b_{1}, c_{1} \in C$. In other words, the intersection point of crossing lines $(x, \varphi(y)) \cap(y, \varphi(x))$ draws the line ℓ as $x \neq y$ run through C. This gives another proof for the Pascal theorem ${ }^{1}$: the opposite sides of hexagon $a_{1} c_{2} b_{1} a_{2} c_{1} b_{2}$ inscribed in C are the crossing lines for the homography sending a_{1}, b_{1}, c_{1} to a_{2}, b_{2}, c_{2}, and therefore their intersection points lie on the cross-axix ℓ of this homography.

The cross axis of a homography $\varphi: C \rightarrow C$ can by easily drawn by the ruler as soon the action of φ on some triple of points is known. This allows to construct the image $\varphi(z)$ of any given point $z \in C$, and to find the fixed points of φ using only the ruler. In particular, given a smooth conic C and point s in \mathbb{P}_{2}, it is not hard to draw the tangent lines to C from s by means of the ruler only: one could either construct the fixed points of involution $\sigma_{s}: C \rightarrow C$ provided by the pencil s^{\times}, as on fig. $3 \diamond 15$, or use more elegant method based on the Exercise 3.11 below.

Fig. $\mathbf{3} \diamond 15$. Drawing the tangent lines.

Fig. $\mathbf{3} \triangleleft 16$. Drawing the polar.

EXERCISE 3.11 (STEINER's CONSTRUCTION). Shown on fig. $3 \diamond 16$ is the construction of polar line $\ell(p)$ for a point p with respect to a conic C due to Jacob Steiner ${ }^{2}$ (1796-1863) and using only the ruler. Explain how and why does it work.
3.3 Pencils of conics. Recall ${ }^{3}$ that lines in the space of conics $\mathbb{P}\left(S^{2} V^{*}\right)$ on the plane $\mathbb{P}_{2}=\mathbb{P}(V)$ are called pencils of conics. A pencil $L \subset \mathbb{P}\left(S^{2} V^{*}\right)$ is uniquely described by any pair of distinct conics $C_{0}=V\left(f_{0}\right), C_{1}=V\left(f_{1}\right)$ from L and consists of the conics $C_{\lambda}=V\left(\lambda_{0} f_{0}+\lambda_{1} f_{1}\right)$, where $\lambda=\left(\lambda_{0}: \lambda_{1}\right) \in \mathbb{P}_{1}=\mathbb{P}\left(\mathbb{k}^{2}\right)$. The intersection $B=C_{0} \cap C_{1}$ is called the base set of the pencil. It does not depend on the choice of basis $C_{0}, C_{1} \in L$, because every conic $C_{\lambda}=V\left(\lambda_{0} f_{0}+\lambda_{1} f_{1}\right) \in L$ contains $B=V\left(f_{0}\right) \cap V\left(f_{1}\right)$ for any two distinct conics $C_{0}=V\left(f_{0}\right), C_{1}=V\left(f_{1}\right)$ in L.

The polynomial $\chi_{\left(f_{0} f_{1}\right)}\left(t_{0}, t_{1}\right) \stackrel{\text { def }}{=} \operatorname{det}\left(t_{0} f_{0}+t_{1} f_{1}\right) \in \mathbb{k}\left[t_{0}, t_{1}\right]$ is called the characteristic polynomial of the pencil with respect to the base conics C_{0}, C_{1}. This is a cubic homogeneous polynomial. Up to multiplication by non zero constants, it does not dependent on a choice of basis in V used for the evaluation of determinant. However, in a contrast with the base set, the characteristic polynomial depends on a choice of basis in the pencil, and a change of basis leads to an invertible linear change of variables $\left(t_{0}, t_{1}\right)$. Thus, an invariant of the pencil is not the characteristic polynomial

[^6]itself but the combinatorial structure of its zero set in \mathbb{P}_{1}. Over algebraically closed field, the latter is either the whole \mathbb{P}_{1}, or one point of multiplicity 3 , or a pair of distinct points of multiplicities 1 and 2, or a triple of distinct points, each of multiplicity 1 . In the first case, the pencil is called degenerated; in the latter case, it is called simple. Thus, a pencil is degenerated if and only it consists of singular conics. A non-degenerated pencil over algebraically closed field can contain 1, 2, or 3 degenerated conics, and $\operatorname{Sing} C_{0} \cap \operatorname{Sing} C_{1}=\varnothing$ for any two different conics C_{0}, C_{1} in the pencil, because a vector $v \in \operatorname{ker} \widehat{f}_{0} \cap \operatorname{ker} \widehat{f}_{1}$ belongs to $\operatorname{ker}\left(\lambda_{0} \widehat{f}_{\lambda}+\lambda_{1} \widehat{f}_{1}\right)$ for all $\lambda \in \mathbb{P}_{1}$. The base set of a non-degenerated pencil over algebraically closed field can consist of $1,2,3$, or 4 points.

LEMMA 3.2

For every conic $C_{\lambda}=V\left(\lambda_{0} f_{0}+\lambda_{1} f_{1}\right)$ in a non-degenerated pencil, $\operatorname{dim} \operatorname{Sing} C_{\lambda}$ is strictly less than the maximal power of $\operatorname{det}(\lambda, t)=\lambda_{0} t_{1}-\lambda_{1} t_{0}$ dividing the characteristic polynomial $\chi_{\left(f_{0} f_{1}\right)}\left(t_{0}, t_{1}\right)$ in $\mathbb{k}\left[t_{0}, t_{1}\right]$.

Proof. Let D be an arbitrary conic of the pencil, and C a smooth conic. Fix a basis in V such that the Gram matrix of C is the identity matrix E, and write A for the Gram matrix of D. Then the conics in pencil ($C D$) become the Gram matrices $t E+A$, where $t \in \mathbb{k}$ is a coordinate on affine line $(C D) \backslash C$. The conic D appears for $t=0$. We have to show that $\operatorname{dim} \operatorname{ker} A$ can not exceed the maximal power of t dividing $\operatorname{det}(t E+A)=t^{3}+t^{2} \delta_{1}(A)+t \delta_{2}(A)+\delta_{3}(A)$, where $\delta_{k}(A)$ is the sum of principal $k \times k$ minors in A. This is obvious, because all minors of order $>3-k$ in A vanish as soon rk $A \leqslant 3-k$.

EXERCISE 3.12. Prove that a non-degenerated pencil of conics contains at most one double line.

Fig. $3 \diamond$ 17. A pencil with 1 base point.

Fig. $3 \diamond$ 18. A pencil with 2 base points and 1 singular conic.

EXAMPLE 3.3 (NON-DEGENERATED PENCIL WITH JUST ONE BASE POINT)

If the base set of a non-degenerated pencil consists of just one point p, then the only singular conic in the pencil is the double line tangent to any smooth conic of the pencil at the point p. Thus, such a pencil is spanned by a smooth conic $C \ni p$ and the double line $l=T_{p} C$. Note that any two smooth conics in such a pencil have the unique intersection point and share the common tangent line at this point, see fig. $3 \diamond 17$.

EXAMPLE 3.4 (NON-DEGENERATED PENCILS WITH TWO BASE POINTS)
If the base set of a pencil consists of two points $p_{1} \neq p_{2}$, then a singular conic in such pencil has to be either the double line $\ell=\left(p_{1} p_{2}\right)$ or a split conic $\ell_{1} \cup \ell_{2}$ such that $p_{1} \in \ell_{1}, p_{2} \in \ell_{2}$ and either p_{1}, p_{2} both differ from $\ell_{1} \cap \ell_{2}$, as on fig. $3 \diamond 19$, or $p_{1}=\ell_{1} \cap \ell_{2}, p_{2} \neq \ell_{1} \cap \ell_{2}$, as on fig. $3 \diamond 18$.

In the latter case the split conic $\ell_{1} \cap \ell_{2}$ is the only singular conic in the pencil. All the other conics are smooth, touch the line ℓ_{1} at p_{1}, and pass through p_{2} like on fig. $3 \diamond 18$. In particular, any two smooth conics in such a pencil have exactly two different intersection points p_{1}, p_{2} and share the same tangent line at p_{1}.

The first two possibilities for a singular conic, i.e., the double line $\ell=\left(p_{1} p_{2}\right)$ or a split conic $\ell_{1} \cup \ell_{2}$ such that $p_{1} \in \ell_{1} \backslash \ell_{2}, p_{2} \in \ell_{2} \backslash \ell_{2}$, can be realized in a pencil with 2 base points only simultaneously.

EXERCISE 3.13. Prove that all conics in \mathbb{P}_{2} that touch two given lines ℓ_{1}, ℓ_{2} at two given points

Fig. $3 \diamond 19$. A pencil with 2 base points and 2 singular conics S_{1}, S_{2}. $p_{1} \in \ell_{1} \backslash \ell_{2}, p_{2} \in \ell_{2} \backslash \ell_{1}$ form a pencil with exactly two singular conics: the double line $\ell=\left(p_{1} p_{2}\right)$ and the split conic $\ell_{1} \cup \ell_{2}$.

Both lines l_{1}, ℓ_{2} are uniquely recovered from the double line l and any smooth conic C of the pencil as the tangent lines to C at the intersection points $C \cap \ell$.

Fig. $\mathbf{3} \diamond 20$. A pencil with 3 base poins has 2 singular conics.

EXAMPLE 3.5 (NON-DEGENERATED PENCIL WITH THREE BASE POINTS)
If the base set of a pencil consists of 3 distinct points p_{1}, p_{2}, p_{3}, then these points are not collinear ${ }^{1}$. Hence, such a pencil does not contain a double line. For any split conic $\ell_{1} \cup \ell_{2}$ in the pencil, there are two possibilities: either $p_{1}=\ell_{1} \cap \ell_{2}, p_{2} \in \ell_{1} \backslash \ell_{2}, p_{3} \in \ell_{2} \backslash \ell_{1}$ or $p_{1} \in \ell_{1} \backslash \ell_{2}, p_{2}, p_{3} \in \ell_{2} \backslash \ell_{1}$. On fig. $3 \diamond 20$, the first happens for the lines $\ell_{1}^{\prime}, \ell_{2}^{\prime}$, the second for the lines $\ell_{1}^{\prime \prime}, \ell_{2}^{\prime \prime}$. If the pencil contains $\ell_{1}^{\prime \prime} \cup \ell_{2}^{\prime \prime}$, then every smooth conic from the pencil touches $\ell_{1}^{\prime \prime}$ at p_{1}. Note that the split

[^7]conic $\ell_{1}^{\prime} \cup \ell_{2}^{\prime}$ satisfies this property.
EXERCISE 3.14. Prove that all conics passing through 3 given distinct points a, b, c and touching a given line $\ell \ni c$ form a pencil containing exactly 2 singular conics: $(a b) \cup \ell$ and $(a c) \cup(b c)$.
If the pencil contains $\ell_{1}^{\prime} \cup \ell_{2}^{\prime}$, then all smooth conics in the pencil also have to share the same tangent line at the point p_{1}, because a line $\ell \ni p_{1}$ tangent to a smooth conic $C \ni p_{1}$ touches at p_{1} every conic D from the pencil spanned by C and $\ell_{1}^{\prime} \cup \ell_{2}^{\prime}$. Thus, such a pencil is described by the Exercise 3.14 as well.

EXAMPLE 3.6 (SIMPLE PENCIL OF CONICS)

A pencil of conics over algebraically closed field is simple if and only if it contains three distinct singular conics. Each of these singular conics splits by the Lemma 3.2, and does not pass trough the singular points of two others. Therefore every pair of singular conics has 4 intersection points any 3 of which are non-collinear, see fig. $3 \diamond 21$. These 4 points form the base set of pencil.

Exercise 3.15. Prove that all conics passing through 4 given points a, b, c, d no 3 of which are collinear form a simple pencil containing exactly 3 singular conics formed by the pairs of opposite sides in quadrangle $a b c d$.

Thus, a simple pencil of conics is uniquely determined by its base points a, b, c, d. In homogeneous coordinates $x=\left(x_{0}: x_{1}: x_{2}\right)$ on \mathbb{P}_{2}, the equations of conics from this pencil can be written as

$$
\frac{\operatorname{det}(x, a, b) \cdot \operatorname{det}(x, c, d)}{\operatorname{det}(x, a, d) \cdot \operatorname{det}(x, b, c)}=\frac{\lambda_{0}}{\lambda_{1}}
$$

Fig. $\mathbf{3} \diamond 21$. 3 singular conics and 4 base points of a simple pencil.
where $\lambda=\left(\lambda_{0}: \lambda_{1}\right)$ runs through $\mathbb{P}_{1}=\mathbb{P}\left(\mathbb{K}^{2}\right)$.
All the previous examples of pencils can be viewed as degenerations of a simple pencil appearing when some of the base points stick together. For $a, b \rightarrow p_{1}, c=p_{2}, d=p_{3}$, we get the pencil on fig. $3 \diamond 20$. For $a, b \rightarrow p_{1}, c, d \rightarrow p_{2}$, we come to the pencil on на fig. $3 \diamond 19$. When $a, b, c \rightarrow p_{1}$, $d=p_{2}$, we get fig. $3 \diamond 18$. Finally, on fig. $3 \diamond 17$, all 4 base points are collapsed to one point p.
3.3.1 The hypersurface of singular conics. The singular conics in $\mathbb{P}_{2}=\mathbb{P}(V)$ form a cubic hypersurface $S=V($ det $)$ in the space $\mathbb{P}_{5}=\mathbb{P}\left(S^{2}\right)$ of all conics. The roots of characteristic polynomial $\chi_{\left(f_{0} f_{1}\right)}\left(t_{0}, t_{1}\right)$ correspond to the intersection points of S with the line $L=\left(C_{0} C_{1}\right)$ spanned by conics $C_{0}=V\left(f_{0}\right), C_{1}=V\left(f_{1}\right)$. The character of intersection $S \cap L$ completely determines the geometric properties of the pencil L. A simple pencil L intersects S in 3 distinct points with the multiplicity 1 at each point. If L touches S at a smooth point of S and intersects S with the multiplicity 1 in one more point, then the pencil L looks as on fig. $3 \diamond 20$, where the split conic with singularity at a base point of L corresponds to the touch point of L with S. If L passes through a singular point of S and intersects S once more in another point, then L looks as on fig. $3 \diamond 19$, where the double line corresponds to the singular intersection point of L and S. If L intersects S with the multiplicity 3 in one smooth point of S, the pencil looks as on fig. $3 \diamond 18$. The most degenerated pencil shown on fig. $3 \diamond 17$ is provided by a line L intersecting S with the multiplicity 3 in one singular point of S.

Comments to some exercises

ExRc. 3.1. This is a particular case of the Exercise 1.12.
EXRC. 3.2. Draw the cross-axix ℓ by joining $\left(a_{1} b_{2}\right) \cap\left(b_{1}, a_{2}\right)$ and $\left.\left(c_{1} b_{2}\right) \cap\left(b_{1}, c_{2}\right)\right)$. Then draw a line through b_{1} and $\ell \cap\left(x, b_{2}\right)$. This line crosses ℓ_{2} in $\varphi(x)$.
ExRC. 3.3. Let two tangent lines to C drown from x be given by linear equations $\xi(x)=0, \eta(x)=0$, and let the line ℓ_{1} be the second of them. Then $\xi, \eta \in \mathbb{P}_{2}^{\times}$are the intersection points of the dual conic $C^{\times} \subset \mathbb{P}_{2}$ and the line $\operatorname{Ann} x \subset \mathbb{P}_{2}^{\times}$. To find them, we need to solve a quadratic equation whose coefficients are polynomials in the coordinates of the point x and the elements of the Gram matrix of conic C. One root of this equation leads to the given point $\eta \in \mathbb{P}_{2}$ and therefore is known. Then the second root is a rational function of the first root and the coefficients of quadratic equation by the Vieta formula.
ExRC. 3.4. The arguments are dual to those from the Exercise 3.3.
EXRC. 3.6. Let $c_{1}, c_{2} \in C \backslash\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Parametrize the pencils c_{1}^{\times}and c_{2}^{\times}by some lines $\ell_{1} \nexists c_{1}$ and $\ell_{2} \nexists c_{2}$ respectively, and write $a_{i}^{\prime}, a_{i}^{\prime \prime}$ for the images of points a_{i} under the projections $c_{i}: D \leadsto \ell_{i}$. Then $\left[a_{1}, a_{2}, a_{3}, a_{4}\right]=\left[a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, a_{4}^{\prime}\right]=\left[a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, a_{3}^{\prime \prime}, a_{4}^{\prime \prime}\right]$, where the second equality holds, because the composition of projections $\left(c_{2}: D \leadsto \ell_{2}\right) \circ\left(c_{1}: \ell_{1} \xrightarrow{\sim} D\right)$ is a homography $\ell_{1} \xrightarrow{\sim} \ell_{2}$ sending $a_{i} \mapsto a_{i}^{\prime \prime}$ for all i (comp. with $n^{\circ} 3.1 .3$ on p . 28). Since any linear projective automorphism $\varphi: \mathbb{P}_{2} \xrightarrow{\rightarrow} \mathbb{P}_{2}$ induces the homography of the pencils of lines $a^{\times} \xrightarrow{\sim} \varphi(a)^{\times}$, the second statement of the problem holds as well.
ExRc. 3.8. This is the smooth conic passing through p, q, a, b, c.
Exrc. 3.10. For given $p, q \in \mathbb{P}_{1}$, the equality $[p, q, x, y]=-1$ allows to express $x=x_{0} / x_{1}$ and $y=y_{0} / y_{1}$ through one other rationally. Hence, by the Lemma 3.1 on p. 26 , a homography $\mathbb{P}_{1} \rightarrow \mathbb{P}_{1}$ is provided by the map sending a point $x \in \mathbb{P}_{1}$ to the point $y \in \mathbb{P}_{1}$ such that $[p, q, x, y]=-1$. It is involutive ${ }^{1}$, because $[p, q, x, y]=-1=[p, q, y, x]$. Since it keeps both p, q fixed, it coincides with $\sigma_{p, q}$.
ExRc. 3.13. For a point p and line ℓ in $\mathbb{P}_{2}=\mathbb{P}(V)$, the conics $C=V(f) \subset \mathbb{P}_{2}$ such that ℓ is the polar of p with respect to C form a projective subspace of codimension 2 in $\mathbb{P}_{5}=\mathbb{P}\left(S^{2} V^{*}\right)$. Indeed, associated with $p \in V$ is the linear map

$$
\begin{equation*}
\mathrm{pl}_{p}: S^{2} V^{*} \rightarrow V^{*}, \quad q \mapsto \hat{q}(p) \tag{3-8}
\end{equation*}
$$

which sends a quadratic form q to the covector $\widehat{q}(p): V \rightarrow \mathbb{k}$, and $\operatorname{dim} \operatorname{ker}^{\operatorname{pl}}{ }_{v}=\operatorname{dim} S^{2} V^{*}-$ $\operatorname{dim} V^{*}=3$ when $\operatorname{dim} V=3$. Thus, the preimage of dimension 1 subspace $\operatorname{Ann}(\ell) \in V^{*}$ under the map (3-8) has dimension 4 , that is, codimension 2 . Its projectivisation is of codimension 2 as well. In particular, for $p \in \ell$, this gives what we have stated. Futher, two subspaces of codimension 2 in $\mathbb{P}_{5}=\mathbb{P}\left(S^{2} V^{*}\right)$ formed, respectively, by conics touching the lines ℓ_{1}, ℓ_{2} at the points $p_{1} \in \ell_{1} \backslash \ell_{2}$, $p_{2} \in \ell_{2} \backslash \ell_{1}$ are intersecting at least along a line. If their intersection would a plane, then for any pair of points $a, b \mathbb{P}_{2}$ there would be a conic passing through a, b and touching ℓ_{1}, ℓ_{2} at p_{1}, p_{2} respectively. For $a \in \ell \backslash\left\{p_{1}, p_{2}\right\}, b \notin \ell \cup \ell_{1} \cup \ell_{2}$, such the conic must split into the line ℓ and another line different from ℓ, ℓ_{1}, ℓ_{2}. Hence, this conic can not intersect ℓ_{1}, ℓ_{2} with multiplicities 2 in p_{1}, p_{2} simultaneously.

[^8]EXRC. 3.14. The first follows from the fact that $\ell_{1}^{\prime \prime} \cup \ell_{2}^{\prime \prime}$ also touches ℓ at p_{1}. The second is similar to the Exercise 3.13: use the facts that conics passing through a given point form a hyperplane, whereas conics touching a given line at a given point form a subspace of codimension 2 in the space of conics.
ExRC. 3.15. Four hyperplanes in $\mathbb{P}_{5}=\mathbb{P}\left(S^{2} V^{*}\right)$ formed by the conics passing through a, b, c, d are linearly independent, because for any 3 of the points, there is a split conic passing through them but not through the remaining fourth point. Hence, these 4 hyperplanes are intersecting along a line. The split conics formed by pairs of opposite sides in quadrangle abcd lie in the pencil. This forces the pencil to be simple.

[^0]: ${ }^{1}$ Note that the latter two coincide as soon φ is a perspective.

[^1]: ${ }^{1}$ Perhaps, after a modification of the finite set on which φ is undefined.
 ${ }^{2}$ See $\mathrm{n}^{\circ} 1.3 .3$ on p. 9.
 ${ }^{3}$ See n° 1.3.3 on p. 9 .

[^2]: ${ }^{1}$ They can be thought of as intersection points of «the opposite sides» of hexagon $p_{1}, p_{2}, \ldots, p_{6}$.
 ${ }^{2}$ See the Example 3.1 on p. 29.

[^3]: ${ }^{1}$ See $n^{\circ} 1.3 .3$ on p .9 .
 ${ }^{2}$ Note that this map differs from the map $\mathbb{P}_{1}^{x} \hookrightarrow \mathbb{P}_{2}$, described in formula (1-5) on p. 10 and the Example 1.4 , by composing with the latter with duality isomorphism $\mathbb{P}_{1} \leadsto \mathbb{P}_{1}^{\times}$from (3-3).

[^4]: ${ }^{1}$ See the Example 1.5 on p. 11.
 ${ }^{2}$ See $n^{\circ} 3.1$. 3 on p. 28.

[^5]: ${ }^{1}$ Recall, we assume that \mathbb{k} is algebraically closed and char $\mathbb{k} \neq 2$.
 ${ }^{2}$ In particular, this forces φ to have either two distinct fixed points or just one fixed «double point», and the latter means that ℓ is tangent to C at the fixed point. Note that in both cases ℓ is uniquely recovered from the set of fixed points.

[^6]: ${ }^{1}$ See the Theorem 3.1 on p. 30.
 ${ }^{2}$ See J. Steiner. «Die geometrischen Konstruktionen, ausgeführt mittelst der geraden Linie und eines festen Kreises: als Lehrgegenstand auf höheren Unterrichts-Anstalten und zur praktischen Benutzung», Ostwald's Klassiker der exakten Wissenschaften, vol. 60.
 ${ }^{3}$ See $\mathrm{n}^{\circ} 1.3$. 2 on p. 9.

[^7]: ${ }^{1}$ Otherwise the line passing through them would intersect every smooth conic of the pencil in 3 distinct points.

[^8]: ${ }^{1}$ Do you see that in the affine chart whose infinity is p, the this homography is nothing but the central symmetry with respect to q ?

