
§3 Working examples: lines and conics on the plane

3.1 Homographies. A linear projective isomorphism between two projective lines is called a ho-
mography. An important example of homography is provided by a perspective ∶ ℓ ⥲ ℓ , the
central projection of a line ℓ ⊂ ℙ to another line ℓ ⊂ ℙ from a point ∉ ℓ ∪ ℓ , see fig. 3⋄1.
Exercise 3.1. Make sure that a perspective is a homography.
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Fig. 3⋄1. The perspective ∶ ℓ ⥲ ℓ .

A homography ∶ ℓ ⥲ ℓ is a perspective if and only if it sends the intersection point ℓ ∩ ℓ to
itself. Indeed, choose two distinct points , ∈ ℓ ∖ℓ and put = ( ( ))∩( ( )) as on fig. 3⋄1.
Then the perspective ∶ ℓ ⥲ ℓ sends the points , , ℓ ∩ ℓ to ( ), ( ), ℓ ∩ ℓ . Thus, it
coincides with if and only if maps the intersection of lines to itself.

3.1.1 The cross-axis. Given two lines ℓ , ℓ ⊂ ℙ intersecting at the point = ℓ ∩ ℓ , then
for any line ℓ ⊂ ℙ and points ∈ ℓ , ∈ ℓ the composition of perspectives

( ∶ ℓ → ℓ ) ∘ ( ∶ ℓ → ℓ) (3-1)

takes ↦ , ℓ ∩ ℓ ↦ , ↦ ℓ ∩ ℓ, see fig. 3⋄2.
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Fig. 3⋄2. The cross-axis of a homography.
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26 §3Working examples: lines and conics on the plane

Every homography ∶ ℓ ⥲ ℓ admits a decomposition (3-1) in which the point ∈ ℓ can be
chosen arbitrarily, = ( ), and the line ℓ is uniquely predicted by and does not depend on
the choice of ∈ ℓ . Indeed, fix some distinct points , , ∈ ℓ ∖ ℓ and write , , ∈ ℓ
for their images under . Put ℓ as the line joining the cross-intersections ( ) ∩ ( ) and
( ) ∩ ( ). Then the composition (3-1) sends , , to , , and therefore coin-
cides with , see fig. 3⋄2. If we repeat this argument for the ordered triple , , instead
of , , , then we get the decomposition = ( ∶ ℓ′ → ℓ ) ∘ ( ∶ ℓ′ → ℓ), where ℓ′ joins the
cross-intersections ( ) ∩ ( ) and ( ) ∩ ( , ), see fig. 3⋄3. Since both lines ℓ, ℓ′ pass
through the points1 ( ) ∩ ( , ), ( ), − ( ), we conclude that ℓ = ℓ′. Hence, all the cross-
intersections ( , ( )) ∩ ( , ( )), where ≠ are running through ℓ , lie on the same line ℓ,
which is uniquely determined by this property.
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Fig. 3⋄3. Coincidence ℓ′ = ℓ.
Definition 3.1 (the cross-axis of homograph )
Given a homography ∶ ℓ ⥲ ℓ , the line ℓ drown by cross-intersections ( , ( )) ∩ ( , ( )) as

≠ run through ℓ is called the cross-axis of .

Remark 3.1. The cross-axis of non-perspective homography ∶ ℓ ⥲ ℓ is well defined as the
line joining (ℓ ∩ ℓ ) and − (ℓ ∩ ℓ ), which are distinct. If is a perspective, then the point

(ℓ ∩ ℓ ) = − (ℓ ∩ ℓ ) = ℓ ∩ ℓ still lies on the cross-axis but does not fix it uniquely.

Exercise 3.2. Let a homography ∶ ℓ ⥲ ℓ send 3 given points , , ∈ ℓ to 3 given
points , , ∈ ℓ . Using only the ruler, construct ( ) for a given ∈ ℓ .

Lemma 3.1
Let 𝕜 be an algebraically closed field of zero characteristic. If a bijection

∶ ℙ (𝕜) ∖ {finite set of points} ⥲ ℙ (𝕜) ∖ {finite set of points}

can be described in some affine chart with a local coordinate by a formula
∶ ↦ ( )/ ( ) , where , ∈ 𝕜[ ] , (3-2)

then is the restriction of a unique homography ℙ ⥲ ℙ .
1Note that the latter two coincide as soon is a perspective.
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Proof. In the homogeneous coordinates ( ∶ ) such that = ∕ , the formula (3-2) can
be rewritten1 as ∶ ( ∶ ) ↦ ( � ( , ) ∶ ( , )) �, where , ∈ 𝕜[ , ] are non-
proportional homogeneous polynomials of the same degree . Write ℙ for the projectivization of
space of homogeneous polynomials of degree in , . As soon a point = ( ∶ ) ∈ ℙ has
a unique preimage under , the polynomial ( , ) = ( , ) − ( , ) has just one
root in ℙ . Since 𝕜 is algebraically closed, is the proper th power of a linear form, that is,
lies on the Veronese curve2 ⊂ ℙ . On the other hand, the polynomial runs through the line
( , ) ⊂ ℙ as runs through ℙ . Since ℙ (𝕜) is infinite, we conclude that the Veronese curve
has infinitely many intersections with the line ( , ). But for ⩾ , any distinct points of
are non-collinear3. Hence, = and ∈ PGL (𝕜). �

3.1.2 Homographies provided by conics. Let a homography ∶ ℓ ⥲ ℓ send an ordered
triple of distinct points , , ∈ ℓ ∖ ℓ to , , ∈ ℓ . If the lines ( ), ( ), ( )
meet all together at some point , then coincides with the perspective ∶ ℓ ⥲ ℓ , and this
happens if and only if ( ) = , see fig. 3⋄4.
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Fig. 3⋄4. Perspective ∶ ℓ → ℓ . Fig. 3⋄5. Homography ∶ ℓ → ℓ .

If the lines ( ), ( ), ( ) are not concurrent, then any of the lines ℓ , ℓ , ( , ),
( , ), ( , ) are not concurrent, and there exists a unique smooth conic touching all these
lines by the Corollary 2.4 on p. 21, see fig. 3⋄5. In this case, the homography is provided by

the tangent lines to , i.e., = ( ) if and only if the line ( ) is tangent to . Indeed, the map
∶ ℓ → ℓ , which sends ∈ ℓ to the intersection point of ℓ with the tangent line from to

other than ℓ , is obviously bijective.
Exercise 3.3. Convince yourself that this map satisfies the Lemma 3.1.

We conclude that ∶ ℓ → ℓ is a homography that acts on , , exactly as .
Thus, every homography ∶ ℓ ⥲ ℓ is either a perspective ∶ ℓ ⥲ ℓ provided by some

point ∉ ℓ ∪ ℓ or a homography ∶ ℓ → ℓ provided by a smooth conic touching the both
lines ℓ , ℓ . In both cases, the point and conic are uniquely predicted by . The perspective

∶ ℓ ⥲ ℓ can be treated as a degeneration of the non-perspective homography ∶ ℓ ⥲ ℓ
arising when splits in two lines crossing at the centre of perspective. However these two lines can

1Perhaps, after a modification of the finite set on which is undefined.
2See n∘ 1.3.3 on p. 9.
3See n∘ 1.3.3 on p. 9.
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be chosen in many ways: any two lines joining the corresponding points are fitted in the picture.
Note also that the image and preimage of ℓ ∩ℓ under the homography ∶ ℓ ⥲ ℓ are the points
of contact ℓ ∩ and ℓ ∩ respectively.

Proposition 3.1 (inscribed-circumscribed triangles)
Two triangles ▵ and ▵ are both inscribed in some smooth conic ′ if and only if
they are both circumscribed about some smooth conic ″.

Proof. Let points , , , , , lie on a smooth conic ′ like in fig. 3⋄6. Put ℓ = ( ),
ℓ = ( ) and write ∶ ℓ ⥲ ′ for the projection of ℓ onto ′ from and ∶ ′ ⥲ ℓ for
the projection of ′ onto ℓ from . The composition [ ∶ ′ ⥲ ℓ ] ∘ [ ∶ ℓ ⥲ ′] ∶ ℓ ⥲ ℓ
is a non-perspective homography sending ↦ , ↦ , ↦ , ↦ . Let ″ be a smooth
conic whose tangent lines join the homographic points. Then ″ is obviously inscribed in the both
triangles. The opposite implication is projectively dual to just proven. �
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Fig. 3⋄6. Inscribed circumscribed triangles.

Corollar 3.1 (Poncelet’s porism for triangles)
Assume that a triangle ▵ is simultaneously inscribed in a smooth conic ′ and circumscribed
about a smooth conic ″. Then every point of ′ except for a finite set is a vertex of triangle
simultaneously inscribed in ′ and circumscribed about ″.

Proof (see fig. 3⋄6). For any , , ∈ ′ such that ( ), ( ) are two different tangent
lines to ″, the triangles ▵ and ▵ are both circumscribed about some smooth conic
by the Proposition 3.1. Since touches lines ( ), ( ), ( ), ( ), ( ), it coincides
with ″ by the Corollary 2.4 on p. 21. �

3.1.3 Homographic pencils of lines. Projectively dual version of the construction from n∘ 3.1.2
deals with a homography ∶ × ⥲ between two pencils of lines in ℙ passing through the
points and respectively. Let sent distinct lines ℓ′ , ℓ′ , ℓ′ ∋ other than ( ) to the
lines ℓ″, ℓ″, ℓ″ ∋ . Write = ℓ′ ∩ ℓ″, = , , , for the intersection points of corresponding
lines. Since every points from , , , , are non-collinear, there exists the unique conic
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passing through these points, see fig. 3⋄7 and fig. 3⋄8 below. Provided by this conic is the
homography ∶ × ⥲ × sending ( ) ↦ ( ) for all ∈ .
Exercise 3.4. Use the Lemma 3.1 on p. 26 to convince yourself that this map is actually a
homography.
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Fig. 3⋄7. Perspective homography
∶ × → ×.

Fig. 3⋄8. Non-perspective homography
∶ × → ×.

Since this homography takes ℓ′ ↦ ℓ″ for = , , , it coincides with , see. fig. 3⋄8. The homog-
raphy provided by a smooth conic takes ↦ ( ) and ( ) ↦ . The conic
splits if and only if the points , , are collinear or, equivalenly, when the line ( ) goes
to itself. In this case = ( ) ∪ ( ) and the homography is a perspective, see fig. 3⋄7. In a
contrast with n∘ 3.1.2, the split conic is uniquely determined by the perspective in this case.
Example 3.1 (tracing conic b the ruler)
Let be a conic drawn through given points , , … , no of which are collinear. The points
of can be constructed by the ruler as follows. Draw the lines ℓ = ( ), ℓ = ( ) and mark
the point = ( ) ∩ ( ), see fig. 3⋄9.
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Fig. 3⋄9. Tracing a conic by a ruler.
The perspective ∶ ℓ ⥲ ℓ is decomposed as the projection ∶ ℓ ⥲ of ℓ onto from
followed by projection ∶ ⥲ ℓ from onto ℓ from .
Exercise 3.5. Check this by comparing the action on points , , ∈ ℓ , see fig. 3⋄9.
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Thus, for any line ℓ ∋ , the lines joining , with the intersection points = ℓ∩ℓ , = ℓ∩ℓ
are crossing at the point (ℓ) = ( ) ∩ ( ) ∈ , see fig. 3⋄9. As ℓ turns about , the point

(ℓ) draws the conic .
Theorem 3.1 (Pascal’s theorem)
Six points , , … , no of which are collinear lie on a smooth conic if and only if intersection
points1 = ( ) ∩ ( ) , = ( ) ∩ ( ) , = ( ) ∩ ( ) are collinear.
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Fig. 3⋄10. The hexogram of Pascal.

Proof. Let ℓ = ( ), ℓ = ( ), see fig. 3⋄10. Assume that ∈ ( ). Then the perspective
∶ ℓ → ℓ takes ↦ and is decomposed2 as ( ∶ ⥲ ℓ ) ∘ ( ∶ ℓ ⥲ ), where is

the smooth conic passing trough , , … , . Thus, = ( ) ∩ ( ) ∈ . Conversely, if
( ) ∩ ( ) ∈ , then the above composition takes ↦ . Hence, the perspective ∶ ℓ → ℓ
also sends ↦ forcing ∈ ( ). �
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Fig. 3⋄11. Inscribed hexagon. Fig. 3⋄12. Circumscribed hexagon.

Corollar 3.2 (Brianchon’s theorem)
A hexagon , , … , is circumscribed about a non-singular conic if and only if «the main diag-
onals» ( ), ( ), ( ) are concurrent, see fig. 3⋄12.

Proof. This is dual to the Theorem 3.1, comp. fig. 3⋄11 and fig. 3⋄12. �
1They can be thought of as intersection points of «the opposite sides» of hexagon , , … , .
2See the Example 3.1 on p. 29.
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3.2 Internal geometry of a smooth conic. In this section we assume on default that the ground
field 𝕜 is algebraically closed and char(𝕜) ≠ . Dual projective lines ℙ = ℙ( ), ℙ = ℙ( ∗) are
naturally identified by the canonical homography provided by projective duality:

∶ ℙ ⥲ ℙ× , ↦ Ann . (3-3)

In coordinates, it takes a point ( ∶ ) ∈ ℙ to the linear form det( , ) = − , whose
coordinates in the dual basis of ℙ× are (− ∶ ). The plane ℙ = ℙ( ∗) can be thought1 of
as the space of non-ordered pairs of possibly coinciding points in ℙ = ℙ( ) by mapping a pair of
points = ( ∶ ), = ( ∶ ) on ℙ to the binary quadratic form with roots { , }:

( , ) = det ( ) det ( ) =

= ⋅ − ( + ) ⋅ + ⋅ ∈ ∗ .
(3-4)

We will often misuse the notations and write { , } ∈ ℙ for the quadratic form (3-4). Pairs
{ , } ∈ ℙ , where ∈ ℙ is fixed and runs through ℙ , form a line in ℙ . This line consists of all

∈ ( ∗) such that ( ) = . Pairs of coinciding points { , } ∈ ℙ form the smooth Veronese
conic ⊂ ℙ . The above line { , } is tangent to at the point { , }, certainly. Thus, the pair
of tangent lines to drown through a point { , } ∉ is formed by { , }, { , }, where ∈ ℙ ,
which meet at the points { , }, { , }.

The Veronese conic stays in the natural bijection with ℙ provided by the Veronese map2

ℙ ↪ ℙ , ↦ { , } .

In coordinates, it takes a point ( ∶ ) ∈ ℙ to the binary quadratic form + +
with coefficients

( ∶ ∶ ) = ( ∶ − ∶ ) . (3-5)
We refer the ratio ( ∶ ) as the internal homogeneous coordinate of the point { , } on the Veronese
conic, and define the cross-ratio of four points { , }, = , … , , on as [ , , , ] on ℙ .
Note that the internal homogeneous coordinates on are predicted by a choice of basis in ℙ
whereas the cross-ratio does not depend on a choice of coordinates.

As soon 𝕜 is algebraically closed and char 𝕜 ≠ , every smooth conic on the plane can be
identified with the Veronese conic by means of linear projective automorphism of the plane. This
allows to introduce internal homogeneous coordinates and the cross-ratio on . We would like to
verify that different choices of the linear projective automorphism ∶ ℙ ⥲ ℙ such that ( ) =
= do not change the cross-ratio and lead to invertible linear changes of the internal homogeneous
coordinates. To this aim, let us redefine the cross-ratio more geometrically.

Definition 3.2 (the cross-ratio on a smooth conic)
Given an ordered quadruple of different points , , , on a smooth conic , consider a point

∈ other than given. The cross-ratio of lines [�( ), ( ), ( ), ( )]� in the pencil × of lines
passing through is called the cross-ratio of points on .

1See n∘ 1.3.3 on p. 9.
2Note that this map differs from the map ℙ ↪ ℙ , described in formula (1-5) on p. 10 and the Exam-

ple 1.4, by composing with the latter with duality isomorphism ℙ ⥲ ℙ× from (3-3).
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Exercise 3.6. Prove that the cross-ratio does not depend on the choice of and is preserved by
linear projective automorphisms of the plane.

Since the parameterization (3-5) of the Veronese conic ∶ = can be obtained by composing
the projection1 ∶ ℓ ⥲ of the line ℓ ∶ = onto from the point = ( ∶ ∶ ) ∈
Exercise 3.7. Verify that this projection takes ( ∶ ∶ ) ↦ ( ∶ ∶ ).

with the homography ℓ ⥲ ℓ, ( ∶ ∶ ) ↦ ( ∶ − ∶ ), the Definition 3.2 agrees with the
previous definition of homogeneous coordinates and cross-ratio on the Veronese conic.

Proposition 3.2
The smooth conic passing through points , , … , no of which are collinear consists of
all the points ∈ ℙ such that [�( ), ( ), ( ), ( )]� = [�( ), ( ), ( ), ( )]�.

Proof. It follows from the Exercise 3.7 that the equality between cross-ratios holds for all points
∈ . Consider any point ∈ ℙ for which the equality holds, and write for the conic

passing through , , , , . Provided by is the homography2 ∶ × → × send-
ing a line ( ) to the line ( ) for all ∈ . It takes ( ) ↦ ( ) for = , , . Since
[( ), ( ), ( ), ( )] = [( ), ( ), ( ), ( )], the line ( ) goes to the line ( ).
Hence, ∈ and therefore = , because is the only conic passing through , , … , .
Thus, ∈ . �
Exercise 3.8. Given points , , , , ∈ ℙ any of which are non-collinear, consider the
homography of pencils ∶ × → × sending the lines ( ), ( ), ( ) to the lines ( ), ( ),
( ). Describe the locus of intersection points ℓ ∩ (ℓ) for ℓ ∈ ×.
3.2.1 Homographies on a smooth conic. A bijection ∶ ⥲ provided by an invertible

linear change of internal homogeneous coordinates on a smooth conic is called a homography. It
follows from the Lemma 3.1 on p. 26 that every rational bijection of the form

∶ ∖ {finite set of points} ⥲ ∖ {finite set of points} (3-6)
( ∶ ) ↦ ( � ( ∕ ) ∶ ( ∕ )) � , (3-7)

where , ∈ 𝕜[ , ], is the restriction of unique homography ⥲ . For any two ordered
triples of distinct points on there exists a unique homography sending one triple to the other. A
bijection ⥲ is a homography if and only if it preserves the cross-ratio on .

Proposition 3.3
Every homography ∶ ⥲ on a smooth conic ⊂ ℙ admits the unique extension to a
linear projective automorphism ̃ ∶ ℙ ⥲ ℙ of the plane. Conversely, any linear projective
automorphism ∶ ℙ ⥲ ℙ such that ( ) = induces the homography | ∶ ⥲ .

Proof. Chose distinct points , , … , ∈ , let ∶ ⥲ be a homography, and put
= ( ). There exists a unique linear projective automorphism ̃ ∶ ℙ ⥲ ℙ such that ̃( ) =

for ⩽ ⩽ . Since ̃ preserves the cross-ratio in the corresponding pencils of lines, the cross-ratio
of lines ( , ), ⩽ ⩽ , in the pencil × equals the cross-ratio of lines ( , ), ⩽ ⩽ , in
the pencil ×. Since the latter equals the cross-ratio of lines ( , ), ⩽ ⩽ , in the same pencil,

1See the Example 1.5 on p. 11.
2See n∘ 3.1.3 on p. 28.
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because ∶ ⥲ is the homography and preserves the cross-ratio on . Thus, for any points
, , … , ∈ the cross-ratios of lines passing through , , , in the pencils × and

̃( )× coincide. Hence, ̃( ) ∈ by the Proposition 3.2. The converse statement follows from
the Exercise 3.6. �

Example 3.2 (involutions)
A self-inverse homography ∶ → , = Id , is called an involution of the conic . The identity
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Fig. 3⋄13. Involution of conic.

involution = Id is referred to as trivial.
Let an involution ∶ → interchange ′ with ″ and ′

with ″ for some mutually different points ′, ″, ′, ″ ∈ , as
on fig. 3⋄13. Consider the intersection point = ( ′ ″)∩( ′ ″).
Provided by is the involution ∶ ⥲ swapping the pair of
intersection points ℓ ∩ on every line ℓ ∋ .
Exercise 3.9. Convince yourself that the map satisfies the
conditions of the Lemma 3.1 on p. 26, and therefore it is a
homography.

Since the actions of and on points ′, ″, ′, ″ coincide,
= . In particular, every non-trivial involution has exactly

two distinct fixed points1, the points of contact of two tangent
lines to coming from . If is identified with the Veronese
conic, the fixed points of involution , are { , } and { , }. We conclude that every involutive
homography ∶ ℙ → ℙ over algebraically closed field has exactly two distinct fixed points

, ∈ ℙ , and ( ) = if and only if the points { , }, { , }, { , } are collinear in ℙ .

Exercise 3.10. Verify that the latter is equivalent to the harmonicity [ , , , ] = − .
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Fig. 3⋄14. The cross-axis of a homography on conic.
3.2.2 The cross-axis of a homography on conic.A homography ∶ ⥲ sending , ,

to , , ∈ is decomposed as projection ∶ → ℓ followed by projection ∶ ℓ → , where
ℓ is the line joining cross-intersections ( ) ∩ ( ) and ( ) ∩ ( ), see fig. 3⋄14. Since the
intersection points ℓ ∩ are exactly the fixed points2 of , the line ℓ is uniquely predicted by

1Recall, we assume that 𝕜 is algebraically closed and char 𝕜 ≠ .
2In particular, this forces to have either two distinct fixed points or just one fixed «double point», and

the latter means that ℓ is tangent to at the fixed point. Note that in both cases ℓ is uniquely recovered from
the set of fixed points.
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and does not depend on the choice of points , , ∈ . In other words, the intersection point
of crossing lines ( , ( )) ∩ ( , ( )) draws the line ℓ as ≠ run through . This gives another
proof for the Pascal theorem1: the opposite sides of hexagon inscribed in are the
crossing lines for the homography sending , , to , , , and therefore their intersection
points lie on the cross-axix ℓ of this homography.

The cross axis of a homography ∶ → can by easily drawn by the ruler as soon the action
of on some triple of points is known. This allows to construct the image ( ) of any given point

∈ , and to find the fixed points of using only the ruler. In particular, given a smooth conic
and point in ℙ , it is not hard to draw the tangent lines to from by means of the ruler only:
one could either construct the fixed points of involution ∶ → provided by the pencil ×, as
on fig. 3⋄15, or use more elegant method based on the Exercise 3.11 below.

p

p

ℓ(p)

C

Fig. 3⋄15. Drawing the tangent lines. Fig. 3⋄16. Drawing the polar.

Exercise 3.11 (Steiner’s construction). Shown on fig. 3⋄16 is the construction of polar line
ℓ( ) for a point with respect to a conic due to Jacob Steiner2 (1796 – 1863) and using only
the ruler. Explain how and why does it work.

3.3 Pencils of conics. Recall3 that lines in the space of conics ℙ( ∗) on the plane ℙ = ℙ( )
are called pencils of conics. A pencil ⊂ ℙ( ∗) is uniquely described by any pair of distinct
conics = ( ), = ( ) from and consists of the conics = ( + ), where

= ( ∶ ) ∈ ℙ = ℙ(𝕜 ). The intersection = ∩ is called the base set of the pencil. It
does not depend on the choice of basis , ∈ , because every conic = ( + ) ∈
contains = ( ) ∩ ( ) for any two distinct conics = ( ), = ( ) in .

The polynomial ( )( , ) ≝ det( + ) ∈ 𝕜[ , ] is called the characteristic polyno-
mial of the pencil with respect to the base conics , . This is a cubic homogeneous polynomial.
Up to multiplication by non zero constants, it does not dependent on a choice of basis in used for
the evaluation of determinant. However, in a contrast with the base set, the characteristic polyno-
mial depends on a choice of basis in the pencil, and a change of basis leads to an invertible linear
change of variables ( , ). Thus, an invariant of the pencil is not the characteristic polynomial

1See the Theorem 3.1 on p. 30.
2See J. Steiner. «Die geometrischen Konstruktionen, ausgeführt mittelst der geraden Linie und eines festen

Kreises: als Lehrgegenstand auf höheren Unterrichts-Anstalten und zur praktischen Benutzung», Ostwald’s
Klassiker der exakten Wissenschaften, vol. 60.

3See n∘ 1.3.2 on p. 9.



3.3. Pencils of conics 35

itself but the combinatorial structure of its zero set in ℙ . Over algebraically closed field, the latter
is either the whole ℙ , or one point of multiplicity , or a pair of distinct points of multiplicities
and , or a triple of distinct points, each of multiplicity . In the first case, the pencil is called
degenerated; in the latter case, it is called simple. Thus, a pencil is degenerated if and only it consists
of singular conics. A non-degenerated pencil over algebraically closed field can contain , , or
degenerated conics, and Sing ∩ Sing = ∅ for any two different conics , in the pencil,
because a vector ∈ ker ̂ ∩ ker ̂ belongs to ker( ̂ + ̂ ) for all ∈ ℙ . The base set of a
non-degenerated pencil over algebraically closed field can consist of , , , or points.

Lemma 3.2
For every conic = ( + ) in a non-degenerated pencil, dim Sing is strictly less than
the maximal power of det( , ) = − dividing the characteristic polynomial ( )( , )
in 𝕜[ , ].

Proof. Let be an arbitrary conic of the pencil, and a smooth conic. Fix a basis in such that
the Gram matrix of is the identity matrix , and write for the Gram matrix of . Then the
conics in pencil ( ) become the Gram matrices + , where ∈ 𝕜 is a coordinate on affine
line ( ) ∖ . The conic appears for = . We have to show that dim ker can not exceed the
maximal power of dividing det( + ) = + ( ) + ( ) + ( ), where ( ) is the sum
of principal × minors in . This is obvious, because all minors of order > − in vanish as
soon rk ⩽ − . �

Exercise 3.12. Prove that a non-degenerated pencil of conics contains at most one double line.

ℓ
𝑝

ℓ

ℓ

𝑆 = ℓ ∪ ℓ 𝑝

𝑝

Fig. 3⋄17. A pencil with base point. Fig. 3⋄18. A pencil with base points and
singular conic.

Example 3.3 (non-degenerated pencil with just one base point)
If the base set of a non-degenerated pencil consists of just one point , then the only singular conic
in the pencil is the double line tangent to any smooth conic of the pencil at the point . Thus, such
a pencil is spanned by a smooth conic ∋ and the double line ℓ = . Note that any two
smooth conics in such a pencil have the unique intersection point and share the common tangent
line at this point, see fig. 3⋄17.



36 §3Working examples: lines and conics on the plane

Example 3.4 (non-degenerated pencils with two base points)
If the base set of a pencil consists of two points ≠ , then a singular conic in such pencil has to

𝑝

𝑝

𝑆 = ℓ ∪ ℓ

𝑆
=
2ℓ

ℓ

ℓ
Fig. 3⋄19. A pencil with base points and

singular conics , .

be either the double line ℓ = ( ) or a split conic ℓ ∪ ℓ such that ∈ ℓ , ∈ ℓ and either
, both differ from ℓ ∩ ℓ , as on fig. 3⋄19, or
= ℓ ∩ ℓ , ≠ ℓ ∩ ℓ , as on fig. 3⋄18.
In the latter case the split conic ℓ ∩ℓ is the only

singular conic in the pencil. All the other conics are
smooth, touch the line ℓ at , and pass through

like on fig. 3⋄18. In particular, any two smooth
conics in such a pencil have exactly two different in-
tersection points , and share the same tangent
line at .

The first two possibilities for a singular conic,
i.e., the double line ℓ = ( ) or a split conic ℓ ∪ℓ
such that ∈ ℓ ∖ ℓ , ∈ ℓ ∖ ℓ , can be realized
in a pencil with base points only simultaneously.
Exercise 3.13. Prove that all conics in ℙ that
touch two given lines ℓ , ℓ at two given points

∈ ℓ ∖ ℓ , ∈ ℓ ∖ ℓ form a pencil with
exactly two singular conics: the double line ℓ = ( ) and the split conic ℓ ∪ ℓ .

Both lines ℓ , ℓ are uniquely recovered from the double line ℓ and any smooth conic of the
pencil as the tangent lines to at the intersection points ∩ ℓ.

𝑝

𝑝

𝑝
𝑆″ = ℓ″ ∪ ℓ″ 𝑆′ = ℓ′ ∪ ℓ′

ℓ″

ℓ″ℓ′

ℓ′

Fig. 3⋄20. A pencil with base poins has singular conics.

Example 3.5 (non-degenerated pencil with three base points)
If the base set of a pencil consists of distinct points , , , then these points are not collinear1.
Hence, such a pencil does not contain a double line. For any split conic ℓ ∪ ℓ in the pencil, there
are two possibilities: either = ℓ ∩ℓ , ∈ ℓ ∖ℓ , ∈ ℓ ∖ℓ or ∈ ℓ ∖ℓ , , ∈ ℓ ∖ℓ .
On fig. 3⋄20, the first happens for the lines ℓ′ , ℓ′ , the second for the lines ℓ″, ℓ″. If the pencil
contains ℓ″ ∪ ℓ″, then every smooth conic from the pencil touches ℓ″ at . Note that the split

1Otherwise the line passing through them would intersect every smooth conic of the pencil in distinct
points.
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conic ℓ′ ∪ ℓ′ satisfies this property.
Exercise 3.14. Prove that all conics passing through given distinct points , , and touching
a given line ℓ ∋ form a pencil containing exactly singular conics: ( ) ∪ ℓ and ( ) ∪ ( ).

If the pencil contains ℓ′ ∪ ℓ′ , then all smooth conics in the pencil also have to share the same
tangent line at the point , because a line ℓ ∋ tangent to a smooth conic ∋ touches at
every conic from the pencil spanned by and ℓ′ ∪ ℓ′ . Thus, such a pencil is described by the
Exercise 3.14 as well.
Example 3.6 (simple pencil of conics)
A pencil of conics over algebraically closed field is simple if and only if it contains three distinct

𝑎

𝑏

𝑐
𝑑

𝑆

𝑆

𝑆
Fig. 3⋄21. singular conics and base

points of a simple pencil.

singular conics. Each of these singular conics splits by the Lemma 3.2, and does not pass trough
the singular points of two others. Therefore every pair of
singular conics has intersection points any of which
are non-collinear, see fig. 3⋄21. These points form the
base set of pencil.
Exercise 3.15. Prove that all conics passing through
given points , , , no of which are collinear
form a simple pencil containing exactly singular
conics formed by the pairs of opposite sides in quad-
rangle .

Thus, a simple pencil of conics is uniquely determined by
its base points , , , . In homogeneous coordinates

= ( ∶ ∶ ) on ℙ , the equations of conics from
this pencil can be written as

det( , , ) ⋅ det( , , )
det( , , ) ⋅ det( , , ) = ,

where = ( ∶ ) runs through ℙ = ℙ(𝕜 ).
All the previous examples of pencils can be viewed as degenerations of a simple pencil appearing

when some of the base points stick together. For , → , = , = , we get the pencil
on fig. 3⋄20. For , → , , → , we come to the pencil on на fig. 3⋄19. When , , → ,

= , we get fig. 3⋄18. Finally, on fig. 3⋄17, all base points are collapsed to one point .
3.3.1 The hypersurface of singular conics. The singular conics in ℙ = ℙ( ) form a cubic

hypersurface = (det) in the spaceℙ = ℙ( ) of all conics. The roots of characteristic polynomial
( )( , ) correspond to the intersection points of with the line = ( ) spanned by conics

= ( ), = ( ). The character of intersection ∩ completely determines the geometric
properties of the pencil . A simple pencil intersects in distinct points with the multiplicity
at each point. If touches at a smooth point of and intersects with the multiplicity in one
more point, then the pencil looks as on fig. 3⋄20, where the split conic with singularity at a base
point of corresponds to the touch point of with . If passes through a singular point of
and intersects once more in another point, then looks as on fig. 3⋄19, where the double line
corresponds to the singular intersection point of and . If intersects with the multiplicity
in one smooth point of , the pencil looks as on fig. 3⋄18. The most degenerated pencil shown
on fig. 3⋄17 is provided by a line intersecting with the multiplicity in one singular point of .



Comments to some exercises

Exrc. 3.1. This is a particular case of the Exercise 1.12.
Exrc. 3.2. Draw the cross-axix ℓ by joining ( ) ∩ ( , ) and ( ) ∩ ( , )). Then draw a
line through and ℓ ∩ ( , ) . This line crosses ℓ in ( ).

Exrc. 3.3. Let two tangent lines to drown from be given by linear equations ( ) = , ( ) = ,
and let the line ℓ be the second of them. Then , ∈ ℙ× are the intersection points of the dual
conic × ⊂ ℙ and the line Ann ⊂ ℙ×. To find them, we need to solve a quadratic equation whose
coefficients are polynomials in the coordinates of the point and the elements of the Gram matrix
of conic . One root of this equation leads to the given point ∈ ℙ and therefore is known. Then
the second root is a rational function of the first root and the coefficients of quadratic equation by
the Vieta formula.

Exrc. 3.4. The arguments are dual to those from the Exercise 3.3.
Exrc. 3.6. Let , ∈ ∖ { , , , }. Parametrize the pencils × and × by some lines
ℓ ∌ and ℓ ∌ respectively, and write ′, ″ for the images of points under the projections

∶ ⥲ ℓ . Then [ , , , ] = [ ′ , ′ , ′ , ′] = [ ″, ″, ″, ″], where the second equality
holds, because the composition of projections ( ∶ ⥲ ℓ ) ∘ ( ∶ ℓ ⥲ ) is a homography
ℓ ⥲ ℓ sending ↦ ″ for all (comp. with n∘ 3.1.3 on p. 28). Since any linear projective
automorphism ∶ ℙ ⥲ ℙ induces the homography of the pencils of lines × ⥲ ( )×, the
second statement of the problem holds as well.

Exrc. 3.8. This is the smooth conic passing through , , , , .
Exrc. 3.10. For given , ∈ ℙ , the equality [ , , , ] = − allows to express = ∕ and

= ∕ through one other rationally. Hence, by the Lemma 3.1 on p. 26, a homographyℙ → ℙ
is provided by the map sending a point ∈ ℙ to the point ∈ ℙ such that [ , , , ] = − . It
is involutive1, because [ , , , ] = − = [ , , , ]. Since it keeps both , fixed, it coincides
with , .

Exrc. 3.13. For a point and line ℓ in ℙ = ℙ( ), the conics = ( ) ⊂ ℙ such that ℓ is the
polar of with respect to form a projective subspace of codimension in ℙ = ℙ( ∗). Indeed,
associated with ∈ is the linear map

pl ∶ ∗ → ∗ , ↦ ̂( ) , (3-8)

which sends a quadratic form to the covector ̂( )∶ → 𝕜, and dim ker pl = dim ∗ −
dim ∗ = when dim = . Thus, the preimage of dimension subspace Ann(ℓ) ∈ ∗ under the
map (3-8) has dimension , that is, codimension . Its projectivisation is of codimension as well.
In particular, for ∈ ℓ, this gives what we have stated. Futher, two subspaces of codimension 2 in
ℙ = ℙ( ∗) formed, respectively, by conics touching the lines ℓ , ℓ at the points ∈ ℓ ∖ ℓ ,

∈ ℓ ∖ ℓ are intersecting at least along a line. If their intersection would a plane, then for any
pair of points , ℙ there would be a conic passing through , and touching ℓ , ℓ at ,
respectively. For ∈ ℓ ∖ { , }, ∉ ℓ ∪ ℓ ∪ ℓ , such the conic must split into the line ℓ and
another line different from ℓ, ℓ , ℓ . Hence, this conic can not intersect ℓ , ℓ with multiplicities
in , simultaneously.
1Do you see that in the affine chart whose infinity is , the this homography is nothing but the central

symmetry with respect to ?

38
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Exrc. 3.14. The first follows from the fact that ℓ″ ∪ ℓ″ also touches ℓ at . The second is similar
to the Exercise 3.13: use the facts that conics passing through a given point form a hyperplane,
whereas conics touching a given line at a given point form a subspace of codimension in the
space of conics.

Exrc. 3.15. Four hyperplanes in ℙ = ℙ( ∗) formed by the conics passing through , , , are
linearly independent, because for any of the points, there is a split conic passing through them
but not through the remaining fourth point. Hence, these hyperplanes are intersecting along a
line. The split conics formed by pairs of opposite sides in quadrangle lie in the pencil. This
forces the pencil to be simple.
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