
§2 Projective Quadrics

2.1 Quadratic forms and quadrics. We assume on default in §2 that char 𝕜 ≠ . Projective
hypersurfaces of degree 2 are called projective quadrics. Given a non-zero quadratic form ∈ ∗,
we write ⊂ ℙ( ) for the quadric = ( ).

2.1.1 The Gram matrix. If char 𝕜 ≠ , then every quadratic form ∈ ∗ on = 𝕜 + can
be written as ( ) = ∑ , = , where = ( , , … , ) is the coordinate row, is
the transposed column of coordinates, and = ( ) ∈ Mat + (𝕜) is a symmetric square matrix.
Every non-diagonal element = of equals the half1 of coefficient of monomial in the
reduced expansion for . The matrix is called the Gram matrix of in the chosen basis of .

In other words, for any quadratic polynomial on , there exists a unique symmetric bilinear
form ̃∶ × → 𝕜 such that ( ) = ̃( , ) for all ∈ . In coordinates,

̃( , ) = ∑ = = ∑
( ) . (2-1)

In coordinate-free terms, ̃( , ) = ( � ( + ) − ( ) − ( )) � = ( � ( + ) − ( − ))� .
Exercise 2.1. Check this.

The symmetric bilinear form ̃ is called the polarization of quadratic form . It can be thought of as
an inner product on , possibly degenerated. The elements of Gram matrix equal the inner products
of basic vectors: = ̃( , ). In the matrix notations, = ⋅ , where = ( , , … , ) is
the row of basic vectors in , is the transposed column of basic vectors, and ⋅ ≝ ̃( , ) ∈ 𝕜
for , ∈ . When we pass to another basis ′ = , where ∈ GL + (𝕜), the Gram matrix of
is related with the Gram matrix ′ of ′ as ′ = , because ( ′) ⋅ ′ = ⋅ .
2.1.2 The Gram dterminant. Since det ′ = det ⋅ det , the determinant of Gram matrix

does not depend on the choice of basis up to multiplication by non zero squares from 𝕜. We write
det ∈ 𝕜∕𝕜∗ for the class of det modulo multiplication by non zero squares, and call it the Gram
determinant of quadratic form ∈ ∗. The form and quadric = ( ) are called smooth or
non-singular, if det ≠ . Otherwise they are called singular or degenerated.

2.1.3 The rank. Since the rank of matrix is not changed under multiplications of the matrix by
non-degenerated matrices, the rank of Gram matrix does not depend on the choice of basis as well.
It is called the rang of quadretic form and quadric = ( ), and denoted by rk = rk ≝ rk .
Proposition 2.1 (Lagrange’s theorem)
For any quadratic form there exists a basis where the Gram matrix of is diagonal.

Proof. Induction on dim . If ≡ or dim = , then the Gram matrix is diagonal. If dim ⩾
and ( ) = ̃( , ) ≠ for some ∈ , we put = to be the first vector of desired basis.
Every vector ∈ admits a unique decomposition = + , where ∈ 𝕜 and ∈ ⊥ =
= { ∈ | ̃( , ) = }. Indeed, the orthogonality of and − forces = ̃( , )∕ ̃( , ),
then = − (̃( , )∕̃( , )) ⋅ .
Exercise 2.2. Verify that − ( �̃( , )∕̃( , )) � ⋅ ∈ ⊥.

Thus, we have the orthogonal decomposition = 𝕜 ⋅ ⊕ ⊥. By induction, there exists a basis
, … , in ⊥ with diagonal Gram matrix. Hence, , , … , is a required basis for . �
1Note that if char 𝕜 = , such the matrix does not always exists.

16



2.2. Tangent lines 17

Corollar 2.1
Every quadratic form over an algebraically closed field turns to the sum of squares

( ) = + + ⋯ + , where + = rk ,
in appropriate coordinates on .

Proof. Pass to a basis , , … , in which the Gram matrix is diagonal, renumber the vectors
in order to have ( ) ≠ exactly for ⩽ ⩽ , then multiply all these by ∕√ ( ) ∈ 𝕜. �

Example 2.1 (quadrics on ℙ )
It follows from the Proposition 2.1 that the equation of any quadric ⊂ ℙ can be written in
appropriate coordinates on ℙ either as = or as + = , where ≠ . In the first
case, is singular, rk = , and the equation of is the squared linear equation of the point
( ∶ ). By this reason, such a quadric is called a double point. In the second case, rk = , the
quadric is smooth, and its Gram determinant equals up to multiplication by non-zero squares.
If − ∈ 𝕜 is not a square, then the equation ( ∕ ) = − has no solutions, and the quadric is
empty. If − = for some ∈ 𝕜, then + = ( − )( + ) has two distinct roots
(± ∶ ) ∈ ℙ . Thus, the geometry of quadric = ( ) ⊂ ℙ is completely determined by the
Gram determinant det ∈ 𝕜∕(𝕜∗) . If det = , then the quadric is a double point. If − det = ,
that is, − det ∈ 𝕜 is a square, then the quadric consists of two distinct points. If − det ≠ , that
is, − det ∈ 𝕜 is not a square, then the quadric is empty. Note that the latter case never appears
over an algebraically closed field 𝕜.
2.2 Tangent lines. It follows from the Example 2.1 that there are precisely 4 different positional
relationships between a quadric and a line ℓ in ℙ : either ℓ ⊂ , or ℓ ∩ is a double point, or
ℓ∩ is a pair of distinct points, or ℓ∩ = ∅, and the latter case never appears over an algebraically
closed field.
Definition 2.1 (tangent space of quadric)
A line ℓ is called tangent to a quadric at a point ∈ , if either ∈ ℓ ⊂ or ∩ ℓ is the double
point . In these cases we say that ℓ touches at . The union of all tangent lines touching at a
given point ∈ is called the tangent space to at and denoted by .
Proposition 2.2
A line ( ) touches a quadric = ( ) at the point ∈ if and only if ̃( , ) = .

Proof. The Gram matrix of restriction |( , ) in the basis , of line ( ) is

(
̃( , ) ̃( , )
̃( , ) ̃( , )) .

Since ̃( , ) = ( ) = by assumption, the Gram determinant det |( , ) = ̃( , ) . It vanishes
if and only if ̃( , ) = . �

Corollar 2.2 (apparent contour of quadric)
For any point ∉ , the apparent contour of viewed from , i.e., the set of all points ∈ such
that the line ( ) touches at , is cut out by the hyperplane ≝ { ∈ ℙ | ̃( , ) = }.

Proof. Since ̃( , ) = ( ) ≠ , the equation ̃( , ) = is a non-trivial linear homogeneous
equation on . Thus, ⊂ ℙ is a hyperplane, and ∩ coincides with the apparent contour of
viewed from by the Proposition 2.2. �
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2.2.1 Smooth and singular points. Associated with a quadratic form ∈ ∗ is the linear
mapping

̂ ∶ → ∗ , ↦ ̃( ∗ , ) , (2-2)
sending a vector ∈ to the linear form ̂( )∶ → 𝕜, ↦ ̃( , ). The map (2-2) is called the
correlation of quadratic form .
Exercise 2.3. Convince yourself that the matrix of linear map (2-2) written in dual bases , of

and ∗ coincides with the Gram matrix of in the basis .
This shows once more, that the rank rk = dim − dim ker ̂ does not depend on a choice of basis.
The vector space ker( ) ≝ ker ̂ = { ∈ | ̃( , ) = ∀ ∈ } is called the kernel of quadratic
form . The projectivization of the kernel is denoted

Sing ≝ ℙ(ker ) = { ∈ ℙ( ) | ∀ ∈ ̂( , ) = }

and called the vertex space or the singular locus of quadric = ( ) ⊂ ℙ . The points of Sing
are called singular. All points of the complement ∖ Sing are called smooth. Thus, a point

∈ ⊂ ℙ( ) is smooth if and only if the tangent space = { ∈ ℙ | ̃( , ) = } is a
hyperplane in ℙ . Conversely, a point ∈ ⊂ ℙ( ) is singular if and only if the tangent space

= ℙ( ) is the whole space, that is, any line passing through either lies on or does not
intersect anywhere besides .
Exercise 2.4. Convince yourself that the singularity of a point ∈ ⊂ ℙ means that

( ) = for all ⩽ ⩽ .

Note that a quadric is smooth in the sense of n∘ 2.1.2 if and only if it has no singular points.
Lemma 2.1
If a quadric ⊂ ℙ has a smooth point ∈ , then is not contained in a hyperplane.

Proof. For = , this follows from the Example 2.1. Consider ⩾ . If lies inside a hyper-
plane , then every line ℓ ⊄ passing through intersects only in and therefore is tangent to
at . Hence, ℙ = ∪ . This contradicts to the Exercise 2.5 below. �
Exercise 2.5. Show that the projective space over a field of characteristic ≠ is not a union of
two hyperplanes.

Theorem 2.1
For any quadric ⊂ ℙ( ) and projective subspace ⊂ ℙ( ) complementary to Sing , the inter-
section ′ = ∩ is a smooth quadric in , and is the linear join1 of ′ and Sing .

Proof. Let = ℙ( ). Then = ker ⊕ . Assume that there exists a vector ∈ such that
̃( , ′) = for all ′ ∈ . Since ̃( , ) = for all ∈ ker as well, the equality ̃( , ) =
holds for all ∈ . Hence, ∈ ker ∩ = . That is, ′ is smooth. Every line ℓ that intersects
Sing but is not contained in Sing does intersect and either is contained in or does not
intersect anywhere besides the point ℓ ∩ Sing . This forces to be the union of lines ( ) such
that ∈ Sing , ∈ ∩ . �

1For sets , ⊂ ℙ , their linear join is the union of all lines ( ) such that ∈ , ∈ .
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2.3 Duality. Projective spaces ℙ = ℙ( ), ℙ× ≝ ℙ( ∗), obtained from dual vector spaces , ∗,
are called dual. Geometrically, ℙ× is the space of hyperplanes in ℙ , and vice versa. The linear
equation ⟨ , ⟩ = , being considered as an equation on ∈ for a fixed ∈ ∗, defines
a hyperplane ℙ(Ann ) ⊂ ℙ . As an equation on for a fixed , it defines a hyperplane in ℙ×

formed by all hyperplanes in ℙ passing through . For every = , , … , there is the canonical
involutive1 bijection ↔ Ann between projective subspaces of dimension in ℙ and projective
subspaces of dimension ( − − ) inℙ×. It is called the projective duality. For a given = ℙ( ) ⊂ ℙ ,
the dual subspace Ann ≝ ℙ(Ann ) ⊂ ℙ× consists of all hyperplanes in ℙ containing . The
projective duality reverses inclusions: ⊂ ⟺ Ann ⊃ Ann , and sends intersections to linear
joins, and vise versa. This allows to translate the theorems true for ℙ to the dual statements
about the dual figures in ℙ×. The latter may look quite dissimilar to the original. For example, the
collinearity of points in ℙ is translated as the existence of codimension- subspace common for
hyperplanes in ℙ×.
2.3.1 The polar mapping. For a smooth quadric = ( ), the correlation ̂ ∶ → ∗ is

an isomorphism. The induced linear projective isomorphism ∶ ℙ( ) ⥲ ℙ( ∗) is called the polar
mapping or the polarity provided by quadric . The polarity sends a point ∈ ℙ to the hyperplane

= Ann ( ) = { ∈ ℙ( ) | ̃( , ) = } ,

which cuts apparent contour of viewed from in accordance with the Corollary 2.2. The hy-
perplane and point are called the polar and pole of one other with respect to . If ∈ ,
then = is the tangent plane to at . Note that lies on the polar of if and only if
lies on the polar of , because the condition ̃( , ) = is symmetric. Such points , are called
conjugated with respect to the quadric = ( ).
Proposition 2.3
Let a line ( ) intersect a smooth quadric in two distinct points , different from , . Then
, are conjugated with respect to if and only if they are harmonic to , .

Proof. Chose some homogeneous coordinate = ( ∶ ) on the line ℓ = ( ) = ( ). The
intersection ∩ ℓ = { , } considered as a quadric in ℓ is the zero set of quadratic form

( ) = det( , ) ⋅ det( , ) ,

whose polarization is ̃( , ) = ( �det( , ) ⋅ det( , ) + det( , ) ⋅ det( , )) �. Thus, ̃( , ) =
means that det( , ) ⋅ det( , ) = − det( , ) ⋅ det( , ), i.e., [ , , , ] = − . �

Proposition 2.4
Let , ⊂ ℙ be two quadrics with Gram matrices , in some basis of ℙ . If is smooth, then
the polar mapping of sends to the quadric × ⊂ ℙ× which has the Gram matrix × = − −

in the dual basis of ℙ×. Note that rk × = rk .

Proof. Write the homogeneous coordinates in ℙ as row vectors and dual coordinates in ℙ×

as column vectors . The polarity ℙ ⥲ ℙ× provided by sends ∈ ℙ to = . Since is
invertible, is recovered from as = − . When runs through the quadric = , the
corresponding fills the quadric − − = . �

1That is, inverse to itself: Ann Ann = .
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Corollar 2.3
The tangent spaces to a smooth quadric ⊂ ℙ form the smooth quadric × ⊂ ℙ×. The Gram
matrices of , × in dual bases of ℙ , ℙ× are inverse to each other.

Proof. Put = and = in the Proposition 2.4. �
2.3.2 Polarities over non-closed fields. If 𝕜 is not algebraically closed, then there are non-

singular quadratic forms ∈ with ( ) = ∅. However, their polarities ∶ ℙ( ) → ℙ( ∗),
that is, the bijective correspondences between points and hyperplanes, are non-trivial anyway.
Exercise 2.6. Describe geometrically the polarity with respect to «imaginary circle» + = −
in the Euclidean plane ℝ .

Thus, the polarities are much more informative than the quadrics. The quadric is recovered from
its polarity as the set of all points lying on the own polars, i.e., the self-conjugated points. It follows
from the Theorem 1.1 that two polarities coincide if and only if the corresponding quadratic forms
are proportional. Thus, the polarities on ℙ = ℙ( ) stay in bijection with the points of projective
space ℙ( ∗) = ℙ ( + ) . Somewhat erroneous, the latter is called the space of quadrics in ℙ( ). The
quadrics ⊂ ℙ passing through a given point ∈ ℙ form a hyperplane in the space of quadrics,
because the equation ( ) = is linear homogeneous in ∈ ℙ( ∗).
Proposition 2.5
Every collection of ( + )∕ points in ℙ lies on some quadric.

Proof. Any ( + )∕ hyperplanes in ℙ ( + ) have a non empty intersection. �

Proposition 2.6
Over an infinite field, two nonempty smooth quadrics coincide if and only if their equations are
proportional.

Proof. If ( ) = ( ) in ℙ( ), then two polarities , ∶ ℙ( ) ⥲ ℙ( ∗) coincide in all points
of the quadrics. It follows from the Corollary 1.1 on p. 12 and the Exercise 2.7 below that the
correlation maps ̂ , ̂ ∶ ⥲ ∗ and therefore the Gram matrices are proportional. �
Exercise 2.7. Check that over an infinite field, every nonempty smooth quadric ℙ contains

+ points such that no + of them lie within a hyperplane.

2.4 Conics. Plane quadrics are called conics. For ℙ = ℙ( ), the space of conics ℙ( ∗) = ℙ .
Conics of rank are called a double lines. In appropriate coordinates, such a conic has the equation

= . It is totally singular, i.e., has no smooth points at all. By the Theorem 2.1 on p. 18, a conic
of rank is the linear join of the singular point ∈ and a smooth quadric ∩ ℓ within a line

ℓ ∌ . By the Example 2.1 on p. 17, ∩ ℓ either consists of two distinct points or is empty. In the
first case, is the union of two lines intersecting at the singular point . Such a conic is called split.
If ∩ ℓ = ∅, then = { } consists of the singular point only. For example, the conic + =
in ℙ(ℝ ) is of this sort. Over an algebraically closed field, there are no such conics, certainly.
Lemma 2.2 (rational parametri ation of non-empt smooth conic)
Every non-empty smooth conic ⊂ ℙ over any field 𝕜 with char 𝕜 ≠ admits a rational quadratic
parametrization, i.e., there exist homogeneous quadratic polynomials , , ∈ 𝕜[ , ] such
that the map ∶ ℙ → ℙ , ( ∶ ) ↦ ( � ( , ) ∶ ( , ) ∶ ( , )) �, establishes a bijection
between ℙ and .
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Proof. Given a point ∈ , a required parametrization is provided by the projection ∶ ℓ ⥲
of an arbitrary line ℓ ∌ from onto . For every ∈ ℓ, the line ( ) intersects at and one
more point, which coincides with , if ( ) = , and differs from for all other . In the first
case we put ( ) = . For all other , the second intersection point can be written as + , where

∈ 𝕜, and satisfies the equation ̃( + , + ) = , which is equivalent to ( ) = − ̃( , ).
Thus, the map ∶ ℓ ⥲ takes ∈ ℓ to ( ) = ( ) ⋅ − ( , ) ⋅ ∈ . �
Exercise 2.8. Verify that the right hand side of the latter formula equals for = ∩ ℓ, and
make sure that is described in coordinates by a triple of quadratic homogeneous polynomials
in the coordinates of as required.

Lemma 2.3
The intersection ∩ of a smooth conic with a curve of degree in ℙ either consists of at
most points or coincides with .

Proof. Let ∶ ℙ → ℙ , ( ∶ ) ↦ ( � ( , ) ∶ ( , ) ∶ ( , )) � be a rational
quadratic parameterization of , and = ( ) for some homogeneous polynomial ( , , )
of degree . The values of parameter corresponding to the intersection point ∩ satisfy the
equation ( � ( ), ( ), ( )) � = , whose left hand side is either the zero polynomial or a non-
zero homogeneous polynomial of degree . In the first case ⊂ . In the second case the equation
has at most solutions in ℙ . �

Proposition 2.7
Any points in ℙ lie on a conic. Such a conic is unique if and only if every of the points are
non-collinear. If every of the points are non-collinear, the conic is smooth.

Proof. The first statement is exactly the Proposition 2.5 for = . Let a line ℓ pass through some
of the given points. Then any conic passing through the given points contains ℓ. If the remaining
two pints , do not lie on ℓ, then = ℓ ∪ ( ) is unique. If ∈ ℓ, then for any line ℓ′ ∋ , the
split conic ℓ ∪ ℓ′ contains all five given points. If any of the given points are non-collinear, then
every conic passing through the given points is smooth, because a singular conic is either a line,
or a pair of lines, or a point. Since two different smooth conics have at most intersection points
by the Lemma 2.3, a smooth conic passing through points is unique. �

Corollar 2.4
Any lines without triple intersections in ℙ do touch a unique smooth conic.

Proof. This is projectively dual to the last statement in the Proposition 2.7. �

2.5 Quadratic surfaces. The space of quadrics in ℙ = ℙ( ) is ℙ( ∗) = ℙ . In particular, any
points in ℙ lie on some quadric.
Exercise 2.9. Show that any lines in ℙ lie on a quadric.

A quadratic surface of rank is called a double plane. It is totally singular and has the equation
= in appropriate coordinates on ℙ . A quadratic surface of rang either is a split quadric,

i.e., a union of two planes intersecting along the singular line ℓ = Sing , or is exhausted by the
singular line, and the latter case is impossible over an algebraically closed field.
Exercise 2.10. Prove this.
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A quadratic surface ⊂ ℙ of rank is called a simple cone. It is ruled by the lines ( ), where
∈ is the singular point and runs through a smooth conic = ∩ laying in a plane ∌ .

Note that may be empty as soon the ground field is not algebraically closed. In this case = { }
is exhausted by the singular point. If ≠ ∅, the linear span of is the whole .
Exercise 2.11. Convince yourself that the lines laying on a simple cone with vertex over a
smooth conic are exhausted by the lines ( ), ∈ .

As a byproduct of the previous discussion, we get

Proposition 2.8
Every mutually non-intersecting lines in ℙ lie on a smooth quadratic surface. �

Over an algebraically closed field, all smooth quadrics in ℙ are congruent modulo the linear pro-
jective automorphisms of ℙ . The most convenient model of the smooth quadric is described below.

2.5.1 The Segre quadric. Let be a vector space of dimension . Write = End( ) for the
space of linear maps ∶ → , and consider ℙ = ℙ( ). A choice of basis in identifies with
the space Mat (𝕜) of × matrices. The quadric

≝ { ∶∈ End( ) | det = } = { �( ) | � − = ��} � ⊂ ℙ (2-3)

is called the Segre quadric. It is formed by endomorphisms of rank considered up to proportionality.
The image of an operator ∶ → of rank has dimension and is spanned by a non zero vector

∈ , uniquely determined by up to proportionality. The value of on an arbitrary vector
∈ equals ( ) = ( ) ⋅ , where ∈ ∗ is a linear form such that Ann = ker . Note that
is uniquely determined by and ∈ im ∖ . Conversely, for any non-zero ∈ , ∈ ∗ the

operator
⊗ ∶ → , ↦ ( )

has rank , its image is spanned by , and the kernel equals Ann . Thus, we have the well defined
injective map

∶ ℙ( ∗) × ℙ( ) ↪ ℙEnd( ) , ( , ) ↦ ⊗ , (2-4)
whose image coincides with the Segre quadric (2-3). This map is called the Segre embedding.

The rows of any × matrix of rank are proportional, as well as the columns. The matrices
with a fixed ratio ([row 1] ∶ [row 2]) = ( ∶ ) or ([column 1] ∶ [column 2]) = ( ∶ ) form a
vector subspace of dimension in = Mat (𝕜). After the projectivization these subspaces turns to
the two families of lines ruling the Segre quadric. These lines are the images of «coordinate lines»
ℙ× × and ×ℙ on the product ℙ× ×ℙ = ℙ( ∗)×ℙ( ) under the bijection ℙ× ×ℙ ⥲ provided
by the Segre embedding (2-4). Indeed, the operator ⊗ build from from = ( ∶ ) ∈ ∗ and

= ( ∶ ) ∈ has the matrix

( ) ⋅ ( ) = ( ) (2-5)

with the prescribed ratios ( ∶ ) and ( ∶ ) between the rows and columns respectively.
Since the Segre map ℙ× × ℙ ⥲ is bijective, the incidence relations among coordinate lines in
ℙ× × ℙ are the same as among their images in . That is, within each ruling family, all the lines
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are mutually non-intersecting, every two lines from different ruling families are intersecting, and
each point on the Segre quadric is an intersection point of exactly two lines from different families.
Exercise 2.12. Prove that all lines ℓ ⊂ are exhausted by these two ruling families.

Proposition 2.9 (continuation of the Proposition 2.8)
A smooth quadric passing through a triple ℓ , ℓ , ℓ of mutually non-intersecting lines in ℙ , as
in the Proposition 2.8, is ruled by all those lines in ℙ that do intersect all the lines ℓ . In particular,
this quadric is unique.

Proof. If a line ℓ intersects all the lines ℓ , it has at least distinct points on and therefore
lies on . On the other side, for any point ∈ not laying on the lines ℓ , the tangent plane

intersects every line ℓ at some point ≠ . Since the line ( ) touches at , it lies on
. Thus, all three lines ( ) lie on the conic ∩ . Hence, at least two of them, say ( ),

( ), coincide. If does not belong to the line ℓ = ( ) = ( ), then the tangent plane
intersects ℓ at a point different from and all ’s. The line ( ) ⊂ by the same reason as
above. Thus, contains the triangle formed by distinct lines ℓ, ( ), and ( ). Hence,
contains the whole plane spanned by this triangle1.
Exercise 2.13. Show that a smooth quadric in ℙ can not contain a plane.

Therefore, the points , , , are collinear, that is, lies on a line intersecting all the lines ℓ .
�

Exercise 2.14. Given mutually non-intersecting lines in ℙ , how many lines intersect them
all?

2.6 Linear subspaces lying on a smooth quadric. A smooth quadric is called -planar, if
there is a projective subspace ⊂ of dimension dim = and does not contain a subspace of
higher dimension. By the definition, the planarity of the empty quadric is − . Thus, the quadrics
of planarity are non-empty and do not contain lines.
Proposition 2.10
The planarity of a smooth quadric ⊂ ℙ does not exceed dim ∕ = ( − )∕ .

Proof. Let ℙ = ℙ( ) and = ℙ( ) ⊂ = ( ) for some non-singular quadratic form ∈ ∗

and a vector subspace ⊂ . Since | = , the correlation ̂ ∶ ⥲ ∗ sends into Ann( ).
Since ̂ is injective, dim( ) = dim ̂( ) ⩽ dim Ann = dim − dim . Thus, dim ⩽ dim
and dim ⩽ − . �

Lemma 2.4
For any smooth quadric and hyperplane , the intersection ∩ either is a smooth quadric in
or has exactly one singular point ∈ ∩ . The latter happens if and only if = .

Proof. Let = ( ) ⊂ ℙ( ), = ℙ( ). Since dim ker ( ̂| ) = dim ( ∩ ̂− (Ann ) ) ⩽
⩽ dim ̂− (Ann ) = dim Ann = dim − dim = , the quadric ∩ ⊂ has at most one
singular point. If Sing = { } ≠ ∅, then the kernel ker ̂| ⊂ has dimension and is spanned
by . Thus, Ann( ̂( )) = , that is, = . Vice versa, if = = ℙ(Ann ̂( )), then

∈ Ann ̂( ) belongs to the kernel of the restriction of ̂ on Ann ̂. �
1Because for every point of the plane except for the vertexes of triangle, every line passing through this

point intersects all three lines ℓ, ( ), and ( ).
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Proposition 2.11
Let ⊂ ℙ + be a smooth quadric of dimension . For every ⩽ ⩽ ∕ , the projective
subspaces of dimension laying in and passing through a given point ∈ stay in bijection
with all projective subspaces of dimension − laying on a smooth quadric of dimension −
cut out of by any hyperplane ⊂ complementary to within the tangent hyperplane

≃ ℙ − .

Proof. Every projective subspace ⊂ of dimension passing through ∈ lies inside the
intersection ∩ , which is the singular quadric in ℙ − = with just one singular point
by the Lemma 2.4. It accordance with the Theorem 2.1 on p. 18, the quadric ∩ ⊂ ℙ − is the
cone ruled by lines ( ), where runs through the smooth quadric ′ cut out of by a hyperplane

⊂ ℙ − not passing through . Thus, the subspaces ⊂ ∩ of dimension are exactly the
linear joins of with the subspaces ′ = ∩ = ∩ ′ of dimension − laying on ′. �

Corollar 2.5
For any two distinct points , on a smooth quadric and all ⩽ ⩽ dim ∕ there is a
bijection between the subspaces of dimension laying on and passing through the points and
respectively. In particular, a projective subspace of dimension laying on a smooth -planar

quadric can be drown through every point of the quadric.

Proof. If ∉ , then = ∩ does not pass through , and lies in the both tangent
spaces , as a hyperplane. By the Proposition 2.11, the sets of projective subspaces ⊂
of dimension passing through and respectively both stay in bijection with the subspaces

′ ⊂ ∩ of dimension − . If ∈ , pick up a point ∈ ∖ ( ∪ ) and repeat the
previous arguments twice for the pairs , and , . �

Corollar 2.6
A smooth quadric of dimension over an algebraically closed field is [ ∕ ]-planar.

Proof. This holds for = , , . Then we use the Proposition 2.11 and induction in . �



Comments to some exercises

Exrc. 2.4. This follows from the last representation from formula (2-1) on p. 16.
Exrc. 2.5. Let ℙ( ) = ℙ(Ann ) ∪ ℙ(Ann ) for some non zero covectors , ∈ ∗. Then the
quadratic form ( ) = ( ) ( ) vanishes identically on . Therefore its polarization ̃( , ) =
( ( + ) − ( ) − ( ))∕ also vanishes. Hence, the Gram matrix of equals zero, i.e., is the
zero polynomial. However, the polynomial ring has no zero divisors.

Exrc. 2.7. Use the Lemma 2.1 on p. 18 and prove that non-empty smooth quadric over an infinite
field can not be covered by a finite number of hyperplanes.

Exrc. 2.9. Pick up some on each line and draw a quadric through these points.
Exrc. 2.10. By the Theorem 2.1 on p. 18, is the linear join of the singular line Sing and a smooth
quadric ∩ ℓ within a line ℓ complementary to Sing . This smooth quadric is either a pair of
distinct points or empty.

Exrc. 2.12. Every line ℓ ⊂ passing through a given point ∈ lies inside ∩ , which is the
split conic exhausted by two ruling lines crossing at .

Exrc. 2.13. See the Proposition 2.10 on p. 23.
Exrc. 2.14. Use the method of loci: remove one of the given lines and look how does the locus filled
by the lines crossing remaining lines interact with the removed line.
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