
§1 Projective geometry

1.1 Preliminaries. Algebraic geometry deals with figures looking locally1 as a set of solutions for
some system of polynomial equations on affine space. Recall briefly what does the latter mean.

1.1.1 Polynomials. Let be a vector space of dimension over a field 𝕜. Its dual space ∗

is the space of all linear maps → 𝕜, also known as linear forms or covectors. We write ⟨ , ⟩ =
= ( ) ∈ 𝕜 for the value of a covector ∈ ∗ on a vector ∈ . Given a basis , , … , ∈ ,
its dual basis , , … , ∈ ∗ consists of the coordinate linear forms defined by prescriptions

⟨ , ⟩ =
{

if =
otherwise.

�

We write ∗ = 𝕜[ , , … , ] for the algebra of polynomials in ’s with coefficients in 𝕜. An-
other choice of basis in ∗ leads to an isomorphic algebra whose generators are obtained from ’s by
invertible linear change of variables. We write ∗ ⊂ ∗ for the subspace of homogeneous poly-
nomials of degree . This subspace is not changed under linear changes of variables. A basis of ∗

is formed by the monomials … numbered by the collections = ( , , … , )
of integers ⩽ ⩽ such that ∑ = .
Exercise 1.1. Make sure that dim ∗ = ( + − ) as soon dim = .

Remark 1.1. Actually, the symmetric algebra ∗ and symmetric powers ∗ of a vector space ∗

admit an intrinsic coordinate-free definition, see n∘ 4.3.1 on p. 44 below. The algebra ∗ is graded,
i.e.,

∗ = ⨁
⩾

∗

as a vector space and ∗ ⋅ ∗ ⊂ + ∗.

1.1.2 Affine space and polynomial functions. Associated with a vector space of dimen-
sion is the affine space 𝔸 = 𝔸( ), also called the affinization of . By the definition, the points
of 𝔸( ) are the vectors of . The point corresponding to the zero vector is called the origin and
denoted . All the other points can be imagined as the heads of non zero radius-vectors drawn
from the origin. Every polynomial = ∑ … ∈ ∗ produces the polynomial function

∶ 𝔸( ) → 𝕜 , ↦ ∑ ⟨ , ⟩ … ⟨ , ⟩ , (1-1)

which evaluates the polynomial at the coordinates of points ∈ 𝔸( ). Despite the Proposition 1.1
below, this function is traditionally denoted by the same letter as polynomial.

Proposition 1.1
The homomorphism of algebras ∶ 𝕜[ , , … , ] → {functions 𝔸 → 𝕜}, which sends a poly-
nomial ∈ 𝕜[ , , … , ] to the corresponding polynomial function ∶ 𝔸 → 𝕜, is injective if
and only if the ground field 𝕜 is infinite.

1That is, in some neighbor of every point.
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4 §1Projective geometry

Proof. If 𝕜 consists of elements, then the space of all functions 𝔸 → 𝕜 consists of elements
whereas the polynomial algebra 𝕜[ , , … , ] is an infinite set. Hence, homomorphism is not
injective. Let 𝕜 be infinite. For = , any non zero polynomial ∈ 𝕜[ ] has at most deg roots.
Hence, the corresponding polynomial function ∶ 𝔸 → 𝕜 is not the zero function. For > , we
proceed inductively. Expand ∈ 𝕜[ , , … , ] as1 ( , … , ) = ∑ ( , … , − ) ⋅ . If
the polynomial function ∶ 𝔸 → 𝕜 vanishes identically, then the evaluation of all coefficients
at any point ∈ 𝔸 − ⊂ 𝔸 turns into polynomial ( , ) ∈ 𝕜[ ] that produces the zero
function on line 𝔸 ⊂ 𝔸 passing through parallel to -axis. Hence, ( , ) = in 𝕜[ ], i.e.,
all the coefficients ( ) are identically zero functions of ∈ 𝔸 − . By induction, they all are the
zero polynomials. �

Exercise 1.2. Let be a prime number, 𝔽 = ℤ∕( ) the residue field modulo . Give an explicit
example of non-zero polynomial ∈ 𝔽 [ ] that produces the zero function ∶ 𝔽 → 𝔽 .
1.1.3 Affine algebraic varieties. For a polynomial ∈ ∗, the set of all zeros of the corre-

sponding polynomial function ∶ 𝔸( ) → 𝕜 is denoted ( ) ≝ { ∈ 𝔸( ) | ( ) = } and called
an affine algebraic hypersurface. An intersection of affine hypersurfaces is called an affine algebraic
variety. Thus, an algebraic variety is a figure ⊂ 𝔸 defined by an arbitrary system of polynomial
equations. The simplest example of a hypersurface is an affine hyperplane given by linear equation

( ) = , where ∈ ∗ is a non-zero linear form, and ∈ 𝕜. Such a hyperplane passes through
the origin if and only if = . In this case the hyperplane coincides with the affinization 𝔸(Ann )
of the vector subspace Ann( ) = { ∈ | ( ) = }, annihilated by the covector . In general
case, an affine hyperplane ( ) = is the shift of 𝔸(Ann ) by an arbitrary vector such that

( ) = .
1.2 Projective space. Much more interesting geometric
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Fig. 1⋄1. Projective word.

object associated with a vector space is the projective
space ℙ( ), also called the projectivization of . By the
definition, the points of ℙ( ) are the vector subspaces of
dimension one in or, equivalently, the lines in𝔸( ) pass-
ing through the origin. To see them as «usual dots» we
have to intersect these lines with a screen, an affine hy-
perplane non-passing through the origin, like on fig. 1⋄1.
We write for such the hyperplane given by linear equa-
tion ( ) = , where ∈ ∗ ∖ , and call it the affine chart
provided by covector .
Exercise 1.3. Convince yourself that the map ↦
establishes a bijection between the non zero covec-
tors and affine hyperplanes in 𝔸( ) that do not pass
through the origin.

No affine chart covers the whole ℙ( ). The difference ℙ( ) ∖ = ℙ(Ann ) consists of all lines
annihilated by , i.e., laying inside the parallel copy of drawn through the origin. The projective
space formed by these lines is called the infinity of affine chart .

Every point of ℙ( ) is covered by some affine chart. For dim = + , the charts are affine
spaces of dimension , and ℙ( ) is looking locally as 𝔸 . By this reason, we say that ℙ( ) has

1That is, as a polynomial in with coefficients in the ring 𝕜[ , , … , − ]
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dimension if dim = + , and write ℙ instead of ℙ( ) when the nature of is not essential.
Note that in a contrast with 𝔸 = 𝔸 × ⋯ × 𝔸 , the space ℙ is not a direct product of copies of
ℙ . It follows from fig. 1⋄1 that ℙ = 𝔸 ⊔ ℙ − (a disjoint union). If we repeat this for ℙ − and
further, we get the decomposition ℙ = 𝔸 ⊔ 𝔸 − ⊔ ℙ − = ⋯ = 𝔸 ⊔ 𝔸 − ⊔ … ⊔ 𝔸 , where
𝔸 = ℙ is the one point set.
Exercise 1.4. Consider this decomposition over the finite field 𝔽 of elements and compute
the cardinalities of both sides independently. Do you recognize the obtained identity on ?
1.2.1 Homogeneous coordinates. A choice of basis , , … , ∈ ∗ identifies with

𝕜 + by sending ∈ to ( ( ) , ( ) , … , ( )) ∈ 𝕜 + . Two coordinate rows ( , , … , )
and ( , , … , ) represent the same point ∈ ℙ( ) if and only if they are proportional, i.e.,

∶ = ∶ for all ⩽ ≠ ⩽ , where the identities of type ∶ = ∶ and
∶ = ∶ are allowed as well. Thus, the points ∈ ℙ( ) stay in bijection with the collections

of ratios ( ∶ ∶ … ∶ ). The latter are called homogeneous coordinates on ℙ( ) with respect
to the chosen basis.

1.2.2 Local affine coordinates. Pick an affine chart = { ∈ | ( ) = } on ℙ = ℙ( ).
Any covectors , , … , ∈ ∗ such that , , , … , form a basis of ∗ provide with
local affine coordinates. Namely, consider the basis , , … , in dual to , , , … , , and
the affine coordinate system with origin at ∈ and axes , , … , ∈ Ann . The affine
coordinates of a point ∈ ℙ in this system are computed as follows: rescale to get the vector

= ∕ ( ) ∈ and evaluate linear forms , ⩽ ⩽ , at this vector. The resulting numbers
( ( ), ( ), … , ( )), where ( ) = ( ) = ( )∕ ( ) are called local affine coordinates of
in the chart with respect to the covectors . Note that local affine coordinates are non-linear
functions of homogeneous coordinates.

𝑠 = 𝑝 ∕𝑝

𝑡 = 𝑝 ∕𝑝
(1, 0)

(0, 1)
(𝑝 ∶ 𝑝 ) = (1 ∶ 𝑡) = (𝑠 ∶ 1)

𝑈 ∶ 𝑥 = 1

𝑈 ∶ 𝑥 = 1

𝑂
𝑥

𝑥

Fig. 1⋄2. The standard affine charts on ℙ .

Example 1.1 (projective line)
The projective line ℙ = ℙ(𝕜 ) is covered by two affine charts = and = represented
by the affine lines = and = in 𝔸 = 𝔸(𝕜 ), see fig. 1⋄2. The chart covers the whole
ℙ except for the point ( ∶ ), the vertical axis in 𝕜 . The function = | = ∕ can be
taken as a local affine coordinate in . The infinite point of the chart is ( ∶ ), the horizontal
axis in 𝕜 . The function = | = ∕ can be taken as a local affine coordinate in . If a
point = ( ∶ ) = ( ∶ ∕ ) = ( ∕ ∶ ) is visible in the both charts, then its coordinates

= ∕ and = ∕ are inverse to one other. Thus, ℙ is obtained by gluing two distinct
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copies of 𝔸 = 𝕜 along the complements to zero by the rule: a point of the first 𝔸 is identified
with the point ∕ of the second. Over the field ℝ of real numbers, this gluing procedure can be
visualized as follows. Consider the circle of diameter one and identify two copies of ℝ with two
tangent lines passing through a pair of opposite points of the circle, see fig. 1⋄3. Then map each
line to the circle via the central projection from the point opposite to the point of contact. It is
immediate from fig. 1⋄3 that ∶ = ∶ for any two points , of different lines mapped to the
same point of the circle.

N
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s=1/t

∅
1

Fig. 1⋄3. ℙ (ℝ) ≃ .

The same construction works for the field ℂ of complex numbers as well, see fig. 1⋄4. Consider
the sphere of diameter one and identify two copies of ℂ with two tangent planes drown through
the south and north poles of the sphere in the way1 shown on fig. 1⋄4. The central projection of
each plane to the sphere from the pole opposite to the point of contact sends complex numbers
, , laying on different planes, to the same point of sphere if and only if and have opposite
arguments and inverse absolute values2, i.e., = ∕ . Thus, the complex projective line can be
thought of as the sphere.
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U1≃C

Fig. 1⋄4. ℙ (ℂ) ≃ .

1Note that the both planes have compatible orientatons with respect to the sphere in the sense that they
can be obtained one from the other by continuous move along the surface of sphere.

2The latter follows from fig. 1⋄3.
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Exercise 1.5. Make sure that a) the real projective plane ℙ (ℝ) can be obtained by gluing a
Möbius tape with a disc along their boundary circles1 b) the real projective 3D space ℙ =
= ℙ(ℝ ) can be identified with the Lie group SO (ℝ) of rotations of the Euclidean space ℝ
about the origin.

Example 1.2 (standard affine covering for ℙ )
The standard affine covering of ℙ = ℙ (𝕜 + ) is formed by + affine charts ≝ ⊂ 𝕜 +

given by equations = . For every = , , … , , the functions

( ) = | = , ⩽ ⩽ , ≠ ,

are taken as default local affine coordinates inside . This allows to think of ℙ as the result of
gluing + distinct copies , , … , of affine space 𝔸 along their actual intersections inside
ℙ . In terms of homogeneous coordinates = ( ∶ ∶ … ∶ ) on ℙ , the intersection ∩
consists of all ∈ 𝕜 + such that ≠ and ≠ . In terms of local affine coordinates inside

and respectively, this locus is described by inequalities ( ) ≠ and ( ) ≠ . Two points
( ) ∈ and ( ) ∈ are glued together in ℙ if and only if ( ) = ∕ ( ) and ( ) = ( )∕ ( ) for
≠ , . The right hand sides of these relations are called the transition functions from ( ) to ( ).

1.3 Projective algebraic varieties. Let us fix some basis , , … , in ∗. In a contrast with
the affine geometry, a non-constant polynomial ∈ 𝕜[ , , … , ] does not produce a well
defined function on ℙ( ) anymore, since typically ( ) ≠ ( ) for non zero ∈ and ∈ 𝕜.
However, for any homogeneous polynomial ∈ ∗, the zero set ( ) = { ∈ ℙ( ) | ( ) = } is
still well defined in ℙ( ), because ( ) = ⟺ ( ) = ( ) = . In other words, for such ,
the affine hypersurface ( ) ⊂ 𝔸( ) is a cone ruled by lines passing through the origin. The set of
these lines is also denoted by ( ) ⊂ ℙ( ) and called a projective hypersurface of degree = deg .
An intersection of projective hypersurfaces is called an algebraic projective variety.

The simplest example of a projective variety is a projective subspace ℙ( ) ⊂ ℙ( ), the projec-
tivization of a vector subspace ⊂ . It is described by a system of linear homogeneous equations

( ) = , where runs through Ann ⊂ ∗. For example, the projectivized linear span of any two
non-proportional vectors , ∈ is denoted ( ) ⊂ ℙ( ) and called a line. It consists of ll points
represented by the vectors + , , ∈ 𝕜. Alternatively, it is described by the system of linear
equations ( ) = , where runs through the subspace Ann( ) ∩ Ann( ) ⊂ ∗ or, equivalently,
through an arbitrary basis of this subspace. The ratio ( ∶ ) can be considered as the internal
homogeneous coordinate of the point + on the projective line ( ) with respect to the basis
, .
Exercise 1.6. Show that dim ∩ ⩾ dim + dim − for any two projective subspaces

, ⊂ ℙ . In particular, ∩ ≠ ∅ soon dim + dim ⩾ . For example, any two lines on
ℙ are intersecting.

Example 1.3 (real affine conics)
Consider the real projective plane ℙ = ℙ(ℝ ) and the curve defined by homogeneous equation

+ = . (1-2)
1Note that the boundary of a Möbius tape is a circle as well as the boundary of a disc.
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In the standard affine chart , where = , in the default local affine coordinates = ∕ ,
= ∕ , the equation (1-2) turns to the equation of circle + = . In the chart , where
= , in the coordinates = ∕ , = ∕ , we get the hyperbola − = . In the

«slanted» chart + , where + = , in the coordinates

= | + = + , = ( − )| + = −
+ ,

the equation (1-2) turns1 to the equation of parabola = . Thus, the affine ellipse, hyperbola, and
parabola are just different pieces of the same projective curve observed in several affine charts.
The shape of in an affine chart ⊂ ℙ is determined by the positional relationship between
and the infinite line ℓ∞ = ( ) of the chart . The curve is looking as an ellipse, hyperbola, and
parabola as soon ℓ∞ does not intersect , touches at one point, and intersects in two distinct
points respectively, see. fig. 1⋄5.

Fig. 1⋄5. Real projective conic.

1.3.1 Projective closure of affine variety. The affine space 𝔸 = 𝔸(𝕜 ) with coordinates

( , , … , )

can be considered as the standard affine chart in the projective space ℙ = ℙ (𝕜 + ) with
homogeneous coordinates ( ∶ ∶ … ∶ ). Every affine algebraic hypersurface = ( ) ⊂
𝔸 , where ( , , … , ) is a (non-homogeneous) polynomial of degree , admits the canonical
extension to the projective hypersurface = ( ) ⊂ ℙ called the projective closure of and defined
by the homogeneous polynomial ( , , … , ) ∈ ∗ of the same degree such that

( , , … , ) = ( , , … , ) .

This polynomial is constructed as follows: write as

( , , … , ) = + ( , , … , ) + ( , , … , ) + ⋯ + ( , , … , )
1Move to the right hand side of (1-2) and divide the both sides by ( + ) .
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where every component is homogeneous of degree , and put
( , , … , ) = ⋅ + ( , , … , ) ⋅ − + ⋯ + ( , , … , ) .

Note that ∩ = and the complement ∖ = ∩ (∞) is cut out of by the infinite hyperplane
= of the chart . In terms of the standard homogeneous coordinates ( ∶ ∶ ⋯ ∶ ) on

the infinite hyperplane, the intersection with is described by the homogeneous equation
( , , … , ) =

of degree , that is, by the vanishing of top degree homogeneous component of the polynomial
describing . Thus, the infinite points of are nothing else than the asymptotic directions of affine
hypersurface .

For example, the projective closure of affine cubic curve = is the projective cubic =
. The latter has exactly one infinite point ∞ = ( ∶ ∶ ). In the standard chart , which

covers this point, the curve looks like the semi-cubic parabola = with a cusp at ∞.
1.3.2 Space of hypersurfaces. Since proportional polynomials define the same hypersurfaces

( ) = ( ) , the projective hypersurfaces of a fixed degree can be viewed as the points of
projective space 𝒮 = 𝒮 ( ) ≝ ℙ( ∗), which is called the space of degree hypersufaces in ℙ( ) .
Exercise 1.7. Find dim 𝒮 ( ) assuming that dim = + .

Projective subspaces of 𝒮 are called linear systems of hypersurfaces. For example, all degree
hypersurfaces passing through a given point ∈ ℙ( ) form a linear system of codimension one,
i.e., a hyperplane in 𝒮 , because the equation ( ) = is linear in ∈ ∗. Every hypersurface
laying in a linear system spanned by ( ), ( ), … , ( ) , is given by equation of the form

+ + ⋯ + = , where , , … , ∈ 𝕜 .

In particular, any such a hypersurface contains the intersection locus ( ) ∩ ( ) ∩ … ∩ ( ).
The points of this intersection are called the base points of the linear system. Traditionally, linear
systems of dimensions 1, 2, 3 are called pencils, nets, and webs respectively.
Exercise 1.8. Show that each pencil of hypersurfaces contains a hypersurface passing through
an arbitrarily prescribed point.

Caution 1.1. It should be kept in mind that if the ground field is not algebraically closed, then
some polynomials of degree may determine nothing geometrically reminiscent of a hypersurface
of degree . For example, the equation + = over ℝ describes the empty set ∅ on the
projective line ℙ , and the one point set ( ∶ ∶ ) in the projective plane ℙ . Even over an
algebraically closed field, some distinct points ≠ in ℙ( ∗) produce the same zero set ( ) =

( ) in ℙ( ). For example, the non-proportional polynomials and define the same two-
point set {( ∶ ), ( ∶ )} on ℙ . We postpone the discussion of geometric concepts avoiding such
problems up to ??.

1.3.3 Working example: unordered collections of points on the line. Let = 𝕜 with the
standard coordinates , . Every set of not necessary distinct points , , … , ∈ ℙ = ℙ( )
is the zero set of homogeneous polynomial of degree

( , ) = ∏
=

det( , ) = ∏
=

( , − , ) , where = ( , ∶ , ) , (1-3)
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which is predicted by the set uniquely up to a scalar factor. We say that the points are the roots
of . Each non-zero homogeneous polynomial of degree has at most distinct roots on ℙ . If
the ground field 𝕜 is algebraically closed, the number of roots1 equals , and sending a collection
of points , , … , to the polynomial (1-3) establishes the bijection between the non-ordered
-typles of points on ℙ and the points of projective space ℙ( ∗).

For an arbitrary field 𝕜, those collections where all points coincide form a curve

⊂ ℙ = ℙ( ∗)

called the Veronese curve2 of degree . It coincides with the image of the Veronese embedding

∶ ℙ× = ℙ ( ∗) ↪ ℙ = ℙ ( ∗) , ↦ , (1-4)

that takes a linear form ∈ ∗, whose zero set consists of one point = Ann ∈ ℙ = ℙ( ), to
the th power ∈ ( ∗), whose zero set is the -tiple point .

Now assume that char 𝕜 = , write polynomials ∈ ∗ and ∈ ( ∗) in the form3

( ) = + , ( ) = ∑ ⋅ ( ) − ,

and use = ( ∶ ) and = ( ∶ ∶ … ∶ ) as homogeneous coordinates in the spaces
ℙ× = ℙ( ∗) and ℙ = ℙ( ∗) respectively. Then we get the following parameterization of the
Veronese curve by the points of ℙ×:

( ∶ ) ↦ ( ∶ ∶ … ∶ ) = ( ∶ − ∶ − ∶ ⋯ ∶ ) . (1-5)

It shows that consists of all those ( ∶ ∶ … ∶ ) ∈ ℙ that form a geometric progression,
i.e., such that the rows of matrix

= (
… − −
… − )

are proportional. The condition rk = is equivalent to the system of homogeneous quadratic
equations + = + saying that all × -minors of vanish. Thus, ⊂ ℙ is an algebraic
projective variety rationally parameterized by the points of projective line. The intersection of
with an arbitrary hyperplane in ℙ given by linear equation + + ⋯ + = consists
of the Veronese-images of roots ( ∶ ) ∈ ℙ of homogeneous polynomial ∑ ⋅ − of
degree . Since it has at most roots, any + distinct points on the Veronese curve do not lie in
a hyperplane. This implies that for ⩽ ⩽ + , any distinct points of span a subspace of
dimension − and do not lie in a subspace of dimension ( − ).
Exercise 1.9. Make sure that this fails when char 𝕜 is positive and divides .

If 𝕜 is algebraically closed, intersects any hyperplane in precisely points (some of which may
coincide). By this reason we say that has degree .

1Counted with multiplicities, where the multiplicity of a root is defined as the maximal integer such
that det ( , ) divides in 𝕜[ , ].

2It has several other names: rational normal curve, twisted rational curve of degree etc
3Note that for char 𝕜 > , the binomial coefficients ( ) may vanish and can not be factored out the

coefficients of .
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Example 1.4 (Veronese conic)
The Veronese conic ⊂ ℙ consists of quadratic trinomials + + that are perfect
squares of linear forms. It is given by the equation ∕ = − det ( ) = − = and
comes with the rational parametrization = , = , = .
1.4 Complementary subspaces and projections. Projective subspaces = ℙ( ) and = ℙ( )
inℙ = ℙ( ) are called complementary, if ∩ = ∅ and dim +dim = − . For example, any two
non-intersecting lines in ℙ are complementary. In terms of the linear algebra, the complementarity
of , means that the vector subspaces , ⊂ have zero intersection ∩ = and

dim + dim = dim + + dim + = + = dim ,
i.e., = ⊕ . In this case every vector ∈ has a unique decomposition = + , where

∈ , ∈ . In particular, ∉ ∪ if and only if the both components , are non zero.
Geometrically, this means that every point ∉ ⊔ lies on a unique line intersecting the both
subspaces , .
Exercise 1.10. Make it sure.

For a pair of complementary subspaces , ⊂ ℙ , the projection ∶ (ℙ ∖ ) → from onto
acts identically on and sends every point ∉ ⊔ to the unique point ∈ such that the line
( ) intersects . In homogeneous coordinates ( ∶ ∶ … ∶ ) such that ( ∶ ∶ … ∶ )
are the coordinates in and ( + ∶ + ∶ … ∶ ) are the coordinates in , the projection
just removes the first + coordinates , ⩽ ⩽ .
Example 1.5 (projecting a conic to a line)
Let , ⊂ ℙ be the conic and line given by equations1

𝑞(𝑡′)
𝑡′

𝑞(𝑡″)
𝑡″

= ( ∶ ∶ )
( ∶ ∶ ) 𝑥

𝑥

𝐿
𝐶

ℓ ′

ℓ ″

Fig. 1⋄6. Projecting a conic to a line.

+ = and = respectively. Consider the pro-
jection ∶ → of to from = ( ∶ ∶ ) ∈
and extend it to by sending to ( ∶ ∶ ) ∈ , the in-
tersection point of with the tangent line to at . In the
standard affine chart this looks as on fig. 1⋄6. Clearly,

provides a bijection between and . This bijection
is birational: the homogeneous coordinates of the corre-
sponding points

= ( ∶ ∶ ) ∈
= ( ∶ ∶ ) = ( ) ∈

are rational algebraic functions of each other:

( ∶ ) = ( ∶ − ) , ( ∶ ∶ ) = ( − ∶ ∶ + )
Exercise 1.11. Check these formulas and use the second of them to list all integer solutions of
the Pythagor equation + = up to common integer factor.

The invertible linear change of homogeneous coordinates by formulas
⎧⎪
⎨
⎪⎩

= +
=
= −

�
⎧⎪
⎨
⎪⎩

= ( − )∕
=
= ( + )∕

�

1It is the same as in the Example 1.3 on p. 7 above.
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transforms to the Veronese conic = from the Example 1.4 on p. 11 and turns the above
parameterization to the standard parameterization of Veronese conic.

1.5 Linear projective transformations. Any linear isomorphism of vector spaces ∶ ⥲
produces well defined bijection ∶ ℙ( ) ⥲ ℙ( ) called a linear projective isomorphism.
Exercise 1.12. Given two hyperplanes , ⊂ ℙ = ℙ( ) and a point ∉ ∪ , verify that
a projection from to induces a linear projective isomorphism ∶ ⥲ .

Theorem 1.1
For any two vector spaces , of the same dimension + and two ordered collections of

+ points , , … , + ∈ ℙ( ), , , … , + ∈ ℙ( ) such that no + points of each
collection lie in a hyperplane, there exists a unique up scalar factor linear isomorphism of vector
spaces ∶ ⥲ such that ( ) = for all .

Proof. Fix some vectors , representing the points , and chose the vectors , , … ,
and , , … , as the bases in and . The condition ( ) = means that ( ) =
for some non zero ∈ 𝕜. Thus, the matrix of in chosen bases is diagonal with , , … , on
the diagonal. Further, all coordinates in the expansion + = + + ⋯ + are
non zero, because vanishing of forces + points with ≠ lie in the hyperplane = .
The same holds for the expansion + = + + ⋯ + , certainly. The condition

( + ) = + + implies that = + for all ⩽ ⩽ . Therefore the diagonal elements
= + ⋅ ∕ , ⩽ ⩽ , are uniquely determined by up to non zero scalar factor + . �

Corollar 1.1
Two linear isomorphisms of vector spaces , ∶ ⥲ produce the same linear projective iso-
morphism = ∶ ℙ( ) ⥲ ℙ( ) if and only if = for some non zero ∈ 𝕜. �

Example 1.6 (automorphisms of quadrangle)
A figure formed by points , , , ∈ ℙ any of

𝑝

𝑝

𝑝

𝑝

𝑞

𝑞

𝑞
Fig. 1⋄7. Quadrangle and associated

triangle.

which are non-collinear and lines joining the points like
on fig. 1⋄7 is called a quadrangle. The intersection points of
its opposite sides:

= ( ) ∩ ( )
= ( ) ∩ ( )
= ( ) ∩ ( )

and lines joining them form the associated triangle of the
quadrangle. Every linear projective automorphism of ℙ
sending the quadrangle to itself permutes its vertexes, and
every permutation of the vertexes is uniquely extended to a
linear projective automorphism of ℙ by the Theorem 1.1.
Hence, the group of all linear projective automorphism of
ℙ sending the quadrangle to itself is naturally identified
with the symmetric group . Every transformation from this group permutes the vertexes of as-
sociated triangle. This leads to the surjective homomorphism of groups ↠ . Its kernel is the
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Klein’s normal subgroup

= {�( , , , ) , ( , , , ) , ( , , , ) , ( , , , )} �▹

formed by the identity permutation and pairs of independent transpositions. The transpositions
( ), ( ), ( ) and -cycles ( ), ( ) from the group are mapped to the same transpositions
( ), ( ), ( ) and -cycles ( ), ( ) from the group , see fig. 1⋄7.

1.5.1 Projective linear group. Linear projective automorphisms of ℙ( ) form a group called
the projective linear group of and denoted PGL( ). It follows from the Theorem 1.1 that this group
is isomorphic to the quotient of linear group GL( ) by the subgroup of scalar dilatations. A choice
of basis in identifies GL( ) with the group GL + (𝕜) of non-degenerated square matrices. Then
PGL( ) is identified with group PGL + (𝕜) of the same matrices considered up to proportionality.
Such a matrix acts on a point = ( ∶ ∶ … ∶ ) ∈ ℙ via left multiplication of the
coordinate column: ↦ ( ) = , where means the transposed .
Example 1.7 (linear fractional transformations of line)
The group PGL (𝕜) consists of non-degenerated × -matrices = ( ) with − ≠
considered up to a constant factor. Such a matrix acts on ℙ = ℙ(𝕜 ) by the rule

( ∶ ) ↦ ( + ∶ + ) .

In the standard affine chart ≃ 𝔸 this action performs the linear fractional transformation of the
local coordinate = ∕ by the rule ↦ ( + )∕( + ). Clearly, this transformation is not
changed under rescaling of the matrix . For any triple of distinct points , , , there is a unique
linear fractional map sending them to ∞, , respectively. Indeed, this map is forced to take

↦ −
− ⋅ −

− . (1-6)

1.5.2 Cross-ratio. Given two points = ( ∶ ), = ( ∶ ) on ℙ = ℙ(𝕜 ), the
difference of their affine coordinates in the standard chart is expressed trough the determinant
of their homogeneous coordinates by the formula

− = − = − = det( , ) .

For an ordered quadruple of distinct points , , , ∈ ℙ , the quantity

[ , , , ] ≝ ( − ) ( − )
( − ) ( − )

=
det ( , ) ⋅ det ( , )
det ( , ) ⋅ det ( , )

(1-7)

is called the cross-ratio of the quadruple , , , . It follows from (1-6) that [ , , , ]
equals the affine coordinate of image of the point under the linear projective isomorphism send-
ing , , to ∞, , respectively. It can take any value except for ∞, , .
Exercise 1.13. Prove that two ordered quadruples of distinct points on ℙ can be transformed
one to the other by a linear projective automorphism if and only if they have equal cross-ratios.

Since an invertible linear change of homogeneous coordinates is nothing but a linear projective
automorphism, the right hand side of (1-7) does not depend on the choice of coordinates onℙ . This
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forces the middle part of (1-7) to depend neither on the choice of affine chart containing the points1
nor on the choice of local affine coordinate within the chart. The symmetric group acts on every
given quadruple of points by permutations. It is clear from (1-7) that the Klein subgroup ⊂
preserves the cross-ratio: [ , , , ] = [ , , , ] = [ , , , ] = [ , , , ].
Exercise 1.14. Check that the values of cross-ratio appearing under the action of -cosets of
identity, transpositions ( ), ( ), ( ), and -cycles ( ), ( ) are related as follows:

[ , , , ] = [ , , , ] = [ , , , ] = [ , , , ] =
[ , , , ] = [ , , , ] = [ , , , ] = [ , , , ] = /
[ , , , ] = [ , , , ] = [ , , , ] = [ , , , ] = ∕( − )
[ , , , ] = [ , , , ] = [ , , , ] = [ , , , ] = −
[ , , , ] = [ , , , ] = [ , , , ] = [ , , , ] =( − )∕
[ , , , ] = [ , , , ] = [ , , , ] = [ , , , ] = ∕( − ) .

(1-8)

These formulas show that there are three special values2 [ , , , ] = − , , ∕ preserved,
respectively, by the transpositions ( ), ( ), ( ) and cyclically permuted by the -cycles. Simi-
larly, there are two special values preserved by the -cycles and interchanged by the transpositions.
They satisfy the equivalent quadratic equations3 = ( − )∕ ⇔ − + = ⇔ = ∕( − ).

The five just listed values of [ , , , ] are called

a

b

c

d

x

y

z

x′

x′′

Fig. 1⋄8. Harmonic pairs of sides.

special. The quadruples of points with such cross-ratios are
also called special. The permutations of points in a non-
special quadruple lead to distinct values of the cross-
ratio. For a special quadruple we get either or distinct
values.

1.5.3 Harmomic pairs of points. A special quadru-
ple of points , , , ∈ ℙ with [ , , , ] = − is called
harmonic. Geometrically, this means that is the middle
point of [ , ] in the affine chart with the infinity at .
Algebraically, the harmonicity means that the cross-ratio
is changed neither by the transposition ( ), nor by the
transposition ( ), and each of these two properties forces
the quadruple to be harmonic. Since the order preserving
exchange of , with , keeps the cross-ratio fixed, the
harmonicity is a symmetric binary relation on the set of
non-ordered pairs of distinct points in ℙ .
Proposition 1.2 (harmonicit in quadrangle)
For any quadrangle , , , on ℙ and its associated triangle , , , the sides of quadrangle are
harmonic to the sides of triangle in the pencils of lines passing through the vertexes of triangle.

Proof. We verify the proposition at the vertex . The pencil of lines passing through is pa-
rameterized by the points of line ( ) by sending a point ∈ ( ) to the line ( ). We have to

1Algebraically, this means that all four values , , , ∈ 𝕜 are finite.
2They satisfy the equations = ∕ , = ∕( − ) , and = − .
3That is, coincide with two different from − cubic roots of one as soon those exist in 𝕜.
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check that [ , , , ′] = − , see fig. 1⋄8. Since the central projections from and preserve the
cross-ratios, [ , , , ′] = [ , , , ″] = [ , , , ′]. Since the transposition in the first pair of
points does not change the cross-ratio, the latter equals − . �



Comments to some exercises

Exrc. 1.4. The right hand side consists of + − + ⋯ + + points. The cardinality of the
left hand side equals the number of non zero vectors in 𝔽 + divided by the number of non zero
elements in 𝔽 , that is, ( + − )∕( − ). We get the summation formula for geometric progression.

Exrc. 1.5. Every line passing through the origin of ℝ + intersects the unit semisphere ∑ = ,
⩾ . The lines laying in the hyperplane = intersect the semisphere in two opposite points of

the boundary. Any other line intersects the semisphere in exactly one internal point. Thus, ℙ(ℝ + )
can be obtained from the solid ball of dimension by gluing together every pair of opposite points
of its boundary sphere. In particular, the plane ℙ = ℙ(ℝ ) is obtained from a square by gluing the
opposite edges taken with opposite orientations, see fig. 5⋄2.

𝑎𝑎

𝑏

𝑏

𝑐

𝑐 𝑑

𝑑

𝑎𝑎

𝑏

𝑏

𝑐

𝑐 𝑑

𝑑

≃

Fig. 5⋄2. Gluing ℙ(ℝ ) from a square.

The same result is obtained by gluing a Möbius tape with a disk along the boundary circles,
see fig. 5⋄3.

𝑎𝑎

𝑏

𝑏

𝑏

𝑏

𝑐

𝑐 𝑑

𝑑

𝑏 𝑏𝑎
𝑐

𝑑

𝑏

𝑏

𝑏𝑐 𝑑≃ ∪

Fig. 5⋄3. ℙ(ℝ ) as a Möbius tape glued to a disk along the boundary circle.

The solid ball of radius in ℝ is mapped onto the group SO by sending a point to the rotation
about line ( ) by angle1 | | radians in the clockwise direction being viewed along ⃖⃖⃖⃖⃗ . This map
is injective on internal points of the ball and identifies the opposite points of its boundary sphere.

Exrc. 1.6. Let ℙ = ℙ( ), = ℙ( ), = ℙ( ) for some vector subspaces , ⊂ . Then

dim( ∩ ) = dim( ) + dim( ) − dim( + ) ⩾ dim( ) + + dim( ) + − − ⩾ .

Exrc. 1.7. ( + ) − .
Exrc. 1.8. In projective space any line does intersect any hyperplane, see the Exercise 1.6.

1We write | | for the euclidean distance between the points , .

70
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Exrc. 1.9. If char 𝕜 = > and = , then ( + ) = ( + ) lies in the linear
span of those monomials whose exponents , both are divisible by .

Exrc. 1.10. Let vector = + represent a point ∈ ℙ( ). Then ℓ = ( , ) passes through and
intersects and at and . Vice versa, if ∈ ( , ), where ∈ and ∈ , then = +
and the uniqueness of the decomposition = + forces = and = . Hence ( ) = ℓ.

Exrc. 1.12. Let = ℙ( ), = ℙ( ), = ℙ(𝕜 ⋅ ). Then = ⊕ 𝕜 ⋅ , because of ∉ .
Projection from is a projectivization of linear projection of onto along 𝕜 ⋅ . Since ∉
, the restriction of this projection onto has zero kernel. Thus, it produces linear projective

isomorphism.
Exrc. 1.13. Let [ , , , ] = [ , , , ]. Write , ∶ ℙ ⥲ ℙ for the linear pro-
jective automorphisms sending ∞, , to the triples , , and , , respectively. Then

( ) = ( ) and − ∘ sends , , , to , , , . Vice versa, let a linear pro-
jective automorphism ∶ ℙ ⥲ ℙ send , , , to , , , . Write ∶ ℙ ⥲ ℙ
for the linear projective automorphism sending , , to ∞, , . Then ∘ takes

, , , ↦ ∞, , , [ , , , ] .

Hence, [ , , , ] = [ , , , ].
Exrc. 1.14. The map ( , , ) ↦ (∞, , ) can be decomposed as the map ( , , ) ↦ (∞, , )
followed by the map (∞, , ) ↦ ( , ∞, ), which takes ↦ ∕ . Similarly, to permute ( , , )
via the cycles ( ), ( ), ( ), ( ) we compose the map ( , , ) ↦ (∞, , ) with the maps
sending (∞, , ) to ( , , ∞) , (∞, , ) , ( , ∞, ) , ( , , ∞) respectively, i.e., with the maps sending
to ∕( − ) , − , ( − )∕ , ∕( − ).
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