## Final Written Exam

The problems may be solved in any order. The complete solution of each problem is worth 10 points. Only an answer without its explanation gives 0 points irrespective of its correctness. To get the $100 \%$ result it is enough to collect 50 points in sum, e.g., solve completely any 5 of the 7 problems.

By default, the ground field is assumed to be algebraically closed of zero characteristic.
Problem 1 (10 points). Let $C_{3} \subset \mathbb{P}_{3}$ be a rational normal cubic ${ }^{1}$. Is it true or not that for every point $p \in \mathbb{P}_{3} \backslash C_{3}$, there exists a line $\ell \subset \mathbb{P}_{3}$ passing through $p$ and intersecting $C_{3}$ in at least two (possibly coinciding) points? If such a line exists for some $p$, should it be unique?

Problem 2 (10 points). Let $C_{1}, C_{3}, C_{3}$ be the three split conics in a simple pencil $L$ of conics on $\mathbb{P}_{2}$ and $a, b$, $c, d$ the four base points of $L$. For an arbitrary conic $C \in L$, compare the cross-ratios $\left[C_{1}, C_{2}, C_{3}, C\right]$ on $L$ and $[a, b, c, d]$ on $C$.

Problem 3 (10 points). Given two quadrics $G, Q \subset \mathbb{P}_{n}$, not necessary smooth, show that the pencil of quadrics spanned by them contains exactly $(n+1)$ distinct singular quadrics if and only if $G$ and $Q$ are transversal, that is, $\operatorname{dim}\left(T_{p} G \cap T_{p} Q\right)=n-2$ for all $p \in G \cap Q$.

Problem 4 ( 10 points). Write $M$ for the projective space of nonzero $m \times n$ matrices considered up to proportionality. Use appropriate incidence variety $\Gamma=\{(L, F) \mid L \subset \operatorname{ker} F\}$, where $L$ is a subspace and $F$ is a matrix, to show that matrices of rank at most $k$ form an irreducible projective subvariety $M_{k} \subset M$, and find $\operatorname{dim} M_{k}$.

Problem 5 ( 10 points). Show that the lines laying on a smoth quadric in $\mathbb{P}_{4}$ form a closed irreducible subvariety in the Grassmannian of all lines in $\mathbb{P}_{4}$, and find the dimension of this subvariety.

Problem 6 (10 points). Given two projective algebraic varieties $X, Y \subset \mathbb{P}(V)$, write $\mathcal{J}(X, Y) \subset \operatorname{Gr}(2, V)$ for the Zariski closure of the set of lines ${ }^{2}(x y)$ joining distinct points $x \in X, y \in Y$, and $J(X, Y) \subset \mathbb{P}(V)$ for the union of lines $\ell \subset \mathbb{P}(V), \ell \in \mathcal{J}(X, Y)$. Show that $J(X, Y)$ is Zariski closed. May $J(X, Y)$ be reducible for irreducible $X, Y$ ? Find $\operatorname{dim} J(X, Y)$ for irreducible non-intersecting $X, Y$ of given dimensions.

Problem 7 (10 points). Given six points $p_{1}, p_{2}, \ldots, p_{6} \in \mathbb{P}_{2}=\mathbb{P}(V)$ any three of which are noncollinear and all the six do not lie on a common conic, let $W \subset \mathbb{P}\left(S^{3} V^{*}\right)$ be the projective space of all cubic curves on $\mathbb{P}_{2}$ passing through the given points. Consider the map $\mathbb{P}_{2} \backslash\left\{p_{1}, p_{2}, \ldots, p_{6}\right\} \rightarrow W^{\times}$that sends a point $p$ to the hyperplane in $W$ formed by all cubics passing through $p$. Write $S \subset W^{\times}$for the closure of the image of this map. Show that $S \subset W^{\times}$is a smooth cubic surface in $\mathbb{P}_{3}$ and describe the 27 pencils of cubic curves passing through $\left\{p_{1}, p_{2}, \ldots, p_{6}\right\}$ dual to the 27 lines laying on $S$.

[^0]
[^0]:    ${ }^{1}$ That is, a curve congruent to the Veronese cubic modulo linear projective automorphisms of $\mathbb{P}_{3}$.
    ${ }^{2}$ Considered as the points of the Grassmannian $\operatorname{Gr}(2, V)$ of all lines in $\mathbb{P}(V)$.

