Отношения

Определения. Бинарным отношением между множествами M и N называется подмножество $R \subset M \times N$. Элементы $m \in M$, $n \in N$ называются R-сравнимыми, если $(m,n) \in R$, что обычно обозначается как m R n. Отношение $R^{\mathrm{opp}} \stackrel{\mathrm{def}}{=} \{(n,m) \in N \times M \mid (m,n) \in R\} \subset N \times M$ называется противоположным отношению $R \subset M \times N$. Композицией отношений $R \subset M \times N$ и $S \subset L \times M$ называется отношение $R \circ S \subset L \times N$, определённое как $R \circ S \stackrel{\mathrm{def}}{=} \{(\ell,n) \in L \times N \mid \exists \, m \in M : (\ell,m) \in S \wedge (m,n) \in R\}$.

Бинарное отношение $R \subset M \times M$ называется *отношением на М*. Такое отношение называется *рефлексивным*, если x R x для всех $x \in M$, *транзитивным* — если для всех $x, y, z \in M$ из x R y и y R z следует, что x R z, симметричным — если $x R y \iff y R x$, и антисимметричным — если x R y и y R x только при x = y. Рефлексивное, транзитивное и симметричное (соотв. антисимметричное) бинарное отношение на $x \in M$ называется эквивалентностью (соотв. частичным порядком).

- Задача 1. Обладают ли перечисленные ниже отношения свойствами рефлексивности, транзитивности, (анти)симметричности, эквивалентности или частичного порядка:
 - а) $x \le y$ (x не больше y) на множестве \mathbb{Q} б) «x не раньше y» на циферблате часов
 - в) «A не проиграл B» на множестве шахматистов, проведших однокруговой турнир 2
 - г) $x \equiv y \pmod{\mathbb{Z}}$, т. е. $x y \in \mathbb{Z}$, на множестве \mathbb{Q} д) $x \mid y$, т. е. x делит y, на множестве \mathbb{Z}
 - e) $x \equiv y \pmod{n}$, т. е. x y кратно n, на множестве \mathbb{Z}
 - ж) $X \subseteq Y$ (включение) з) $X \simeq Y$ (\exists биекция) на множестве подмножеств множества M
 - и) $\ell_1 || \ell_2|$ к) $\ell_1 \perp \ell_2|$ на множестве прямых на плоскости
 - л) пропорциональность³ над полем \Bbbk на множестве ненулевых векторов в \Bbbk^2
 - м) пропорциональность над кольцом $\mathbb Z$ на множестве ненулевых векторов в $\mathbb Z^2$
 - н) линейная зависимость над кольцом $\mathbb Z$ на множестве ненулевых векторов в $\mathbb Z^2$
- Задача 2. Для отображения $f: X \to Y$ обозначим через $\Gamma_f \stackrel{\text{def}}{=} \{(x,y) \in X \times Y \mid y = f(x)\} \subset X \times Y$ его график. Верно ли, что $\Gamma_f \circ \Gamma_g = \Gamma_{f \circ g}$ для любой пары отображений $f: Y \to Z$ и $g: X \to Y$?
- Задача 3. Покажите, что следующие свойства отношения S на множестве M равносильны: a) S является эквивалентностью 6) $S \supset \Delta_M \stackrel{\text{def}}{=} \{(m,m) \mid m \in M\}, S \circ S \subset S$ и $S^{\text{opp}} = S$ в) существуют такие множество⁴ F и сюрьекция $\pi: M \twoheadrightarrow F$, что $x S y \Longleftrightarrow \pi(x) = \pi(y)$.
- Задача 4. Покажите, что: а) пересечение эквивалентностей является эквивалентностью 6) для любого отношения $R \subset M \times M$ существует единственная наименьшая по включению эквивалентность $\overline{R} \supseteq R$ в) $x \overline{R} y$, если и только если x = y или в M найдётся конечная цепочка элементов $x = z_0, z_1, z_2, ..., z_{k-1}, z_k = y$, в которой $z_i R z_{i-1}$ или $z_{i-1} R z_i$ при всех $1 \le i \le k$.
- **Задача 5**. Опишите фактор множества вершин ориентированного графа по эквивалентности, порождённой отношением: «из *x* в *y* ведёт ребро».
- Задача 6. Опишите эквивалентность, порождённую отношением из зад. 1 м), и фактор множество по этой эквивалентности.
- Задача 7. Дробью p/q называется класс пары $(p,q) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ по наименьшей эквивалентности на $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$, обеспечивающей для всех $z \in \mathbb{Z} \setminus \{0\}$ равенства p/q = (pz)/(qz). Опишите эту эквивалентность явно и выясните, задаёт ли формула a) $(a/b) + (c/d) \stackrel{\text{def}}{=} (ad + bc)/(bd)$ б) $(a/b) + (c/d) \stackrel{\text{def}}{=} (a+c)/(b+d)$ в) $(a/b) \cdot (c/d) \stackrel{\text{def}}{=} (ac)/(bd)$ корректную операцию над дробями.
- Задача 8. Нет ли ошибки в следующем рассуждении:

Теорема. Всякое симметричное и транзитивное бинарное отношение рефлексивно.

Доказательство. Для любого x рассмотрим какой-нибудь y, такой что x R y. Тогда, в силу симметричности, y R x, а значит, по транзитивности, x R x.

 $^{^{1}}$ Т. е. кратчайшая дуга из x в y идёт против часовой стрелки.

²Это означает, что каждый сыграл с каждым ровно по одному разу.

 $^{{}^{}_{3}}$ Вектор w пропорционален вектору u над \Bbbk , если $w=\lambda u$ для некоторого ненулевого $\lambda\in \Bbbk.$

 $^{^4}$ Оно называется ϕ актор множеством M по эквивалентности S и обозначается M/S.

⁵Она называется эквивалентностью, порождённой отношением R.