Ext и Tor

- **ГА6•1.** Пусть $M = \mathbb{C}[x,y]/(x,y)$, $N = \mathbb{C}[x,y]/(x-2)$, $K = \mathbb{C}[x,y]/((x-1)^2 + y^2 1)$. В категории $\mathbb{C}[x,y]$ -модулей вычислите все Ext^{ν} и все Tor_{ν} между всеми девятью парами модулей M,N,K.
- Γ А6 \diamond 2. Покажите, что $\operatorname{Ext}^1(\mathbb{Z}[p^{-1}],\mathbb{Z})\simeq \mathbb{Z}_p/\mathbb{Z}$, где \mathbb{Z}_p целые p-адические числа.
- ГА6 $\diamond 3$. Вычислите все $\operatorname{Ext}^i_{\mathbb{Z}/(p)}(\mathbb{Z}/(p),\mathbb{Z}/(p))$ для всех $n \ \vdots \ p^2$.
- **ГА6\diamond4.** Для двусторонних идеалов $I,J \subset R$ докажите, что $\operatorname{Tor}_1^R(R/I,R/J) \simeq (I \cap J)/(IJ)$.
- ГА6 \diamond 5. Для идеала I в коммутативном кольце K докажите, что $\operatorname{Ext}^1_K(K/I,K/I) \simeq \operatorname{Hom}_K(I/I^2,K/I)$.
- ГА6 6. Для левого R-модуля L и правых R-модулей M, N определите несколькими способами произведение $\operatorname{Ext}_R^\alpha(N,M) \otimes \operatorname{Tor}_\beta^R(N,L) \to \operatorname{Tor}_{\beta-\alpha}^R(M,L)$, убедитесь, что все эти способы приводят к одному результату, и для любых $\xi \in \operatorname{Ext}(X,Y)$, $\zeta \in \operatorname{Ext}(Y,Z)$, $\eta \in \operatorname{Tor}(X,A)$, $\alpha \in \operatorname{Ext}(A,B)$, $\gamma \in \operatorname{Ext}(B,C)$ докажите равенства $(\zeta\xi)\eta = \zeta(\xi\eta)$ в $\operatorname{Tor}(Z,A)$, $(\gamma\alpha)\eta = \gamma(\alpha\eta)$ в $\operatorname{Tor}(X,C)$, $\xi(\alpha\eta) = (-1)^{|\alpha||\xi|}\alpha(\xi\eta)$ в $\operatorname{Tor}(Y,B)$.
- **ГАб\diamond7**. Назовём *классом* точной тройки $0 \to M \to X \to N \to 0$ образ $\vartheta = \delta_M(\mathrm{Id}_M) \in \mathrm{Ext}^1(N,M)$ при связывающем гомоморфизме δ_M : $\mathrm{Hom}(M,M) \to \mathrm{Ext}^1(N,M)$ последовательности Ext'ов, возникающей от применения к этой тройке функтора $h_M = \mathrm{Hom}(*,M)$. Докажите, что
 - а) этот же класс $\vartheta = \delta^N(\mathrm{Id}_N)$ при связывающем гомоморфизме δ^N : $\mathrm{Hom}(N,N) \to \mathrm{Ext}^1(N,M)$ последовательности Ext'ов, возникающей от применения к тройке функтора $h^N = \mathrm{Hom}(N,*)$.
 - **б)** каждый класс $\vartheta \in \operatorname{Ext}^1(N, M)$ реализуется точной тройкой
 - **в)** две тройки имеют равные классы если и только если между их средними элементами имеется изоморфизм, тождественно действующий на крайних элементах
 - г) связывающий гомоморфизм $\operatorname{Ext}^k(L,N) \to \operatorname{Ext}^{k+1}(L,M)$ задаётся левым умножением на ϑ
 - д) связывающий гомоморфизм $\operatorname{Ext}^k(M,L) \to \operatorname{Ext}^{k+1}(N,L)$ задаётся правым умножением на $(-1)^k \vartheta$
 - e) связывающий гомоморфизм $\mathrm{Tor}_k(N,L) \to \mathrm{Tor}_{k-1}(M,L)$ задаётся умножением на ϑ в смысле зад. ГА6 \diamond 6.
 - ж) Какой тройкой реализуется сумма классов $\vartheta_1 + \vartheta_2 \in \operatorname{Ext}^1(N, M)$ двух данных троек?
 - з) Вычислите класс расщепимой тройки.

ГА6 8 (формула Кюннета).

а) Для любого комплекса левых R-модулей Q и такого комплекса правых R-модулей P, у которого все модули P_n и dP_n плоские, постройте точную тройку

$$0 \to \bigoplus_{p+q=n} H_p(P) \otimes H_q(Q) \to H_n(P \underset{R}{\otimes} Q) \to \bigoplus_{p+q=n-1} \operatorname{Tor}_1^R \left(H_p(P), H_q(Q) \right) \to 0 \,.$$

- **б)** Покажите, что для коммутативного кольца главных идеалов R и комплекса свободных модулей P эта тройка (неканонически) расщепляется.
- **ГАб«9 (теорема Гильберта о сизигиях).** Рассмотрим градуированную \mathbb{k} -алгебру $S = \mathbb{k}[x_1, x_2, \dots, x_n]$. Покажите, что **a)** каждый конечно порождённый градуированный S-модуль M обладает такой свободной резольвентой $\cdots \to F_2 \to F_1 \to F_0 \to M \to 0$, где $F_p = \bigoplus_q W_{p,q} \bigotimes_{\mathbb{k}} S[-q]$, $W_{p,q}$ векторные пространства, что дифференциал $d: F_p \to F_{p-1}$ аннулируется тензорным умножением на тривиальный S-модуль $^2 \mathbb{k} = S/(x_1, x_2, \dots, x_n)$ **6)** размерности $\dim W_{p,q}$ не зависят от выбора минимальной резольвенты **в)** длина минимальной резольвенты не превышает n+1.
- **ГА6** \diamond **10.** Пусть $U = \mathbb{C}^2$. Постройте минимальную резольвенту однородного идеала кривой Веронезе а) $C_3 = \{\psi^3 \mid \psi \in U\}$ в $\mathbb{P}_3 = \mathbb{P}\left(S^3 U\right)$
 - $\mathbf{6}^*) \ C_d = \{ \psi^d \mid \psi \in U \} \ \mathbf{B} \ \mathbb{P}_d = \mathbb{P} \left(S^d U \right).$

¹Комбинируя различные сочетания инъективных и проективных резольвент.

²Резольвенты с этим свойством называются минимальными.

 $^{^3}$ Т. е. идеала, порождённого всеми однородными многочленами, зануляющимися на этой кривой.

No	дата	кто принял	подпись
1			
2			
3			
4			
5			
6		<u> </u>	
7a			
б			
В			
Г			
Д			
e			
Ж			
3			
8a			
б			
9a			
б			
В			
10a			
б			