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Set 1. Convexity.

AG3⋄1 (centre ofmass). Show that a) for any collection of points𝑄 ,𝑄 , … ,𝑄 ∈ 𝔸 and any collection

of constants¹ 𝜇 , 𝜇 , … , 𝜇 ∈ 𝕜 such that ∑
=
𝜇 = 𝜇 ≠ 0 there exists a unique point 𝑀 ∈ 𝔸 such that

𝜇 𝑀𝑄 + 𝜇 𝑀𝑄 + ⋯ + 𝜇 𝑀𝑄 = 0 . b) for any point 𝑃 ∈ 𝔸 the point 𝑀 equals 𝑀 = 𝑃 + ∑ = ⋅ 𝑃𝑄 .

AG3⋄2 (grouping masses). Let a finite collection of points 𝑄 with masses 𝜇 ∈ 𝕜 and a finite collection
of points 𝑇 with masses 𝜈 have centres of mass at points 𝑀 and 𝑁 respetively. Assume that all three
sums ∑ 𝜇 , ∑ 𝜈 , ∑ 𝜇 + ∑ 𝜈 are non-zeros. Show that centre of mass for the union of all points² 𝑄
and 𝑇 coincides with the centre of mass of two points 𝑀 , 𝑁 , taken with the masses ∑ 𝜇 and ∑ 𝜈 .

AG3⋄3. Give an example of a closed figure 𝛷 with non-empty interior 𝛷∘ such that 𝛷∘ ≠ 𝛷. Is it possible,
if 𝛷 is convex?

AG3⋄4. Give an example of a closed convex figure with a non-closed set of a) vertexes³ b) extremal
points⁴.

Set 2. Polyhedrons and cones.

AG3⋄5. Let a convex polyhedral cone 𝜎 ∈ ℝ span the whole vector space. Show that 𝜎 and 𝜎 𝑒𝑒 have
the same number of 1-dimensional edges. Give an example of polyhedral cone 𝜎 ∈ ℝ such that 𝜎 and
𝜎∨ have different numbers of 1-dimensional edges.

AG3⋄6. Show that a convex subspace 𝜂 of a convex polyhedral cone 𝜎 is a face iff the following equivalence
holds: ∀ 𝑣 , 𝑣 ∈ 𝜎 𝑣 + 𝑣 ∈ 𝜂 ⟺ 𝑣 , 𝑣 ∈ 𝜂 .

AG3⋄7. Show that any proper face 𝜏 of a convex polyhedral cone 𝜎 : a) is contained in some hyper-face⁵
of 𝜎 b) coincides with the intersection of all hyper-faces of 𝜎 containing 𝜏.

AG3⋄8. Let a convex polyhedral cone 𝜎 ⊊ 𝑉 be generated by vectors 𝑣 , 𝑣 , … , 𝑣 that linearly span 𝑉 ,
and dim𝑉 = 𝑛. Prove that: a) the boundary 𝜕𝜎 is a union of all hyper-faces of 𝜎

b) covectors 𝜉 ∈ 𝑉∗ annihilating the hyper-surfaces 𝜎 ⊂ 𝜏 are contained in a finite set 𝑀 ⊂ 𝑉∗

described as follows: list all the linearly independent collections of (𝑛−1) vectors 𝑣 ; for each such
collection find 𝜉 ∈ 𝑉∗ that spans its annihilator; if for all generators 𝑣 , 1 ⩽ 𝑖 ⩽ 𝑁 , 𝜉 , 𝑣 > 0,
then include 𝜉 in 𝑀, else if for all 𝑣 𝜉 , 𝑣 < 0, then include −𝜉 in 𝑀, otherwise omit this 𝜉.

c) 𝜎 = ∩𝐻+ , where 𝜏 ⊂ 𝜎 runs through the hyper-faces of 𝜎.

AG3⋄9. Let 𝜉 ∈ 𝜎∨ and 𝜏 = Ann (𝜉) ∩ 𝜎 . Prove that 𝜏∨ = {𝜁 − 𝜆𝜉 | 𝜁 ∈ 𝜎∨, 𝜆 ⩾ 0} .

AG3⋄10. Let convex polyhedral cones 𝜎 and 𝜎 intersect each other precisely along a common face 𝜏.
Show that there exists 𝜉 ∈ 𝜎∨ ∩ (−𝜎 )∨ such that 𝜏 = 𝜎 ∩ Ann (𝜉) = 𝜎 ∩ Ann (𝜉) .

AG3⋄11. Show that any two vertexes of any convex polyhedron are connected by some pass formed from
1-dimensional edges.

AG3⋄12. Assume that a convex polyhedron 𝑀 ⊂ 𝔸(𝑉) does not contain affine subspaces of positive di-
mension. For each vertex 𝑝 ∈ 𝑀 write 𝜎 ⊂ 𝑉 for a cone spanned by all the edges of 𝑀 outgoing from
𝑝. Show that: a) 𝑀∞ = ⋂ 𝜎 b) 𝑀 ⊂ 𝑝 + 𝜎 for ny vertex 𝑝 .

¹these constants are called «masses»
²«union» of coinciding points means adding their masses
³recall that a vertex of a convex figure is a face of dimension zero, that is one point intersectionwith some supporting hyperplane
⁴recall that a point 𝑝 of a convex figure 𝛷 is called extremal if there are no segments [𝑎, 𝑏] ⊂ 𝛷 such that 𝑝 is an interior point

of [𝑎, 𝑏]
⁵that is a face of codimension 1



AG3⋄13. Let 𝑀 ⊂ 𝔸(𝑉) be a convex polyhedron with vertexes and covector 𝜉 ∈ 𝑉∗ be bounded below on
𝑀. Show that: a) there exist a vertex 𝑝 ∈ 𝑀 such that ∀ 𝑥 ∈ 𝑀 ⟨ 𝜉 , 𝑥 ⟩ ⩾ ⟨ 𝑥𝑖 , 𝑝 ⟩

b) a vertex 𝑝 ∈ 𝑀 satisfies the above property iff ⟨ 𝜉 , 𝑞 ⟩ ⩾ ⟨ 𝑥𝑖 , 𝑝 ⟩ for each edge [𝑝, 𝑞] ⊂ 𝑀 outgoing
from 𝑝 (including those having 𝑞 at infinity).

Honorary problems

AG3⋄14 (Caratheodori's lemma). Show that each point of the convex hull of an arbitrary figure 𝛷 ⊂ ℝ
is a convex combination of at most (𝑛 + 1) points of 𝛷.

AG3⋄15 (Rhadon's lemma). Show that any finite set of ⩾ (𝑛 + 2) distinct points in ℝ is a disjoint union
of two non-empty subsets with intersecting convex hulls.

AG3⋄16 (Helly's theorem). Given a finite collection of closed convex figures in ℝ such that at least one
of them is compact and any (𝑛 + 1) figures have non-empty intersection, show that the intersection of
all the figures is non-empty.

Regular polyhedrons. Given a polyhedron 𝑀 ⊂ ℝ , a group of 𝑀 is defined as a group of all bijections 𝑀 ⥲ 𝑀
induced by all euclidean linear automorphisms⁶ of ℝ . Any sequence: vertex of 𝑀, edge of 𝑀 outgoing from this
vertex, 2-dimensional face of𝑀 outgoing from this edge, … , a hyper-face of𝑀 outgoing from theis (𝑛− 1)-dimensional
face, 𝑀 itself (all intermediate dimensions have to appear) is called a flag of𝑀. A polyhedron𝑀 is called regular , if the
group of 𝑀 acts transitively on the flags of 𝑀. Given a regular polyhedron 𝑃 ⊂ ℝ , we write ℓ = ℓ(𝑃) for the length of
its edge, write 𝑟 = 𝑟(𝑃) for the radius of its superscribed sphere, and put 𝜚 = 𝜚(𝑃) ≝ ℓ /4𝑟 . In all the problems below
assume that a regular polyhedron 𝑃 ⊂ ℝ linearly spans the whole vector space.

AG3⋄17 (the star). Show that all vertexes of 𝑃 joint with a given vertex 𝑝 ∈ 𝑃 by an edge of 𝑃 form a
regular polyhedron in an (𝑛−1)-dimensional affine subspace of ℝ . It is called a star of 𝑃 and is denoted
by st(𝑃).

AG3⋄18 (the symbol). Schläfli's symbol of a regular polyhedron 𝑃 ⊂ ℝ is a collection of (𝑛 − 1) positive
integers 𝝂(𝑃) = 𝜈 (𝑃), 𝜈 (𝑃), … , 𝜈 − (𝑃) , defined inductively as follows: 𝜈 (𝑃) equals the number
of edges of 2-dimensional face of 𝑃 and the rest sub-sequence 𝜈 (𝑃), … , 𝜈 − (𝑃) = 𝝂 st(𝑃) is the
Schläfli symbol of the star st(𝑃). Find the symbols of regular: a) dodecahedron in ℝ b) icosahedron
in ℝ c) 𝑛-dimensional simplex d) 𝑛-dimensional cube e) 𝑛-dimensional cocube⁷.

AG3⋄19. Express ℓ(st(𝑃)) through ℓ(𝑃) and 𝜈 (𝑃) .
AG3⋄20. Show that 𝜚(𝑃) depends only on the symbol of 𝑃 and satisfies the equality

𝜚(𝑃) = 1 − cos 𝜋∕𝜈 (𝑃) ∕ 𝜚 st(𝑃) .

AG3⋄21 (duality). Let 𝑃 ⊂ ℝ be a regular polyhedron with the centre at the origin. a) Show that
𝑃∗ = {𝜉 ∈ ℝ ∗ | 𝜉(𝑣) ⩾ −1 ∀ 𝑣∈𝑃 } a regular polyhedron with the centre at the origin. b) For each 𝑘
construct a canonical bijection between 𝑘-dimensional spaces of 𝑃 and (𝑛 − 𝑘 − 1)-dimensional faces of
𝑃∗ reversing the inclusions of faces. c) Prove that the symbol of 𝑃∗ is the symbol of 𝑃 read from the
right to the le.

AG3⋄22 (clasification of regular polyhedrons). Show that the symbols of all regular polyhedrons 𝑃 ⊂ ℝ
are contained in the following list:

a) (𝜈) , where 𝜈 ⩾ 3 is any positive integer, for 𝑛 = 2
b) (3, 3) , (3, 4) , (4, 3) , (3, 5) , (5, 3), for 𝑛 = 3
c) (3, 3, 3) , (3, 3, 4) , (4, 3, 3) , (3, 4, 3) , (3, 3, 5) , (5, 3, 3), for 𝑛 = 4
d) (3, … , 3) , (3, … , 3, 4) , (4, 3, … , 3) for 𝑛 ⩾ 5

and for each symbol in the list there exists a unique up to dilatation regular polyhedron that has this
symbol.

⁶we asume that ℝ is equipped with the standard euclidean structure |𝑥| = ∑ 𝑥
⁷that is, the convex hull of centres of the hyper-faces of the cube
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