Set 1. Convexity.

- **AG3**◇**1** (centre of mass). Show that **a**) for any collection of points $Q_1, Q_2, ..., Q_m \in \mathbb{A}^2$ and any collection of constants¹ $\mu_1, \mu_2, ..., \mu_m \in \mathbb{K}$ such that $\sum_{i=1}^m \mu_i = \mu \neq 0$ there exists a unique point $M \in \mathbb{A}^2$ such that $\mu_1 \overrightarrow{MQ}_1 + \mu_2 \overrightarrow{MQ}_2 + \cdots + \mu_m \overrightarrow{MQ}_m = 0$. **b**) for any point $P \in \mathbb{A}^2$ the point M equals $M = P + \sum_{i=1}^m \frac{\mu_i}{\mu} \cdot \overrightarrow{PQ}_i$.
- **AG3**◇2 (grouping masses). Let a finite collection of points Q_i with masses $\mu_i \in \mathbb{k}$ and a finite collection of points T_j with masses ν_j have centres of mass at points M and N respetively. Assume that all three sums $\sum \mu_i$, $\sum \nu_j$, $\sum \mu_i + \sum \nu_j$ are non-zeros. Show that centre of mass for the union of all points² Q_i and T_j coincides with the centre of mass of two points M, N, taken with the masses $\sum \mu_i$ and $\sum \nu_j$.
- **AG33.** Give an example of a closed figure Φ with non-empty interior Φ° such that $\overline{\Phi^{\circ}} \neq \Phi$. Is it possible, if Φ is convex?
- **AG34.** Give an example of a closed convex figure with a non-closed set of **a**) vertexes³ **b**) extremal points⁴.

Set 2. Polyhedrons and cones.

- **AG3<5.** Let a convex polyhedral cone $\sigma \in \mathbb{R}^3$ span the whole vector space. Show that σ and $\sigma^{\nu}ee$ have the same number of 1-dimensional edges. Give an example of polyhedral cone $\sigma \in \mathbb{R}^4$ such that σ and σ^{\vee} have different numbers of 1-dimensional edges.
- **AG36.** Show that a convex subspace η of a convex polyhedral cone σ is a face iff the following equivalence holds: $\forall v_1, v_2 \in \sigma v_1 + v_2 \in \eta \iff v_1, v_2 \in \eta$.
- **AG3** \diamond 7. Show that any proper face τ of a convex polyhedral cone σ : **a**) is contained in some hyper-face⁵ of σ **b**) coincides with the intersection of all hyper-faces of σ containing τ .
- **AG38.** Let a convex polyhedral cone $\sigma \subsetneq V$ be generated by vectors v_1, v_2, \dots, v_N that linearly span *V*, and dim V = n. Prove that: **a)** the boundary $\partial \sigma$ is a union of all hyper-faces of σ
 - b) covectors ξ_τ ∈ V* annihilating the hyper-surfaces σ ⊂ τ are contained in a finite set M ⊂ V* described as follows: list all the linearly independent collections of (n − 1) vectors v_ν; for each such collection find ξ ∈ V* that spans its annihilator; if for all generators v_i, 1 ≤ i ≤ N, (ξ, v_i) > 0, then include ξ in M, else if for all v_i (ξ, v_i) < 0, then include −ξ in M, otherwise omit this ξ.
 c) σ = ∩ H⁺_{ξτ}, where τ ⊂ σ runs through the hyper-faces of σ.
- **AG39.** Let $\xi \in \sigma^{\vee}$ and $\tau = \operatorname{Ann}(\xi) \cap \sigma$. Prove that $\tau^{\vee} = \{\zeta \lambda \xi \mid \zeta \in \sigma^{\vee}, \lambda \ge 0\}$.
- **AG3•10.** Let convex polyhedral cones σ_1 and σ_2 intersect each other precisely along a common face τ . Show that there exists $\xi \in \sigma_1^{\vee} \cap (-\sigma_2)^{\vee}$ such that $\tau = \sigma_1 \cap \operatorname{Ann}(\xi) = \sigma_2 \cap \operatorname{Ann}(\xi)$.
- AG3 <11. Show that any two vertexes of any convex polyhedron are connected by some pass formed from 1-dimensional edges.
- AG3 ◆12. Assume that a convex polyhedron $M \subset \mathbb{A}(V)$ does not contain affine subspaces of positive dimension. For each vertex $p \in M$ write $\sigma_p \subset V$ for a cone spanned by all the edges of M outgoing from p. Show that: **a**) $M_{\infty} = \bigcap_{p} \sigma_{p}$ **b**) $M \subset p + \sigma_{p}$ for ny vertex p.

¹these constants are called «masses»

²«union» of coinciding points means adding their masses

³recall that *a vertex* of a convex figure is a face of dimension zero, that is one point intersection with some supporting hyperplane ⁴recall that a point *p* of a convex figure Φ is called *extremal* if there are no segments $[a, b] \subset \Phi$ such that *p* is an interior point of [a, b]

⁵that is a face of codimension 1

- **AG3**◇**13.** Let $M \subset \mathbb{A}(V)$ be a convex polyhedron with vertexes and covector $\xi \in V^*$ be bounded below on *M*. Show that: **a)** there exist a vertex $p \in M$ such that $\forall x \in M \langle \xi, x \rangle \ge \langle xi, p \rangle$
 - **b)** a vertex $p \in M$ satisfies the above property iff $\langle \xi, q \rangle \ge \langle xi, p \rangle$ for each edge $[p,q] \subset M$ outgoing from p (including those having q at infinity).

Honorary problems

- **AG314** (Caratheodori's lemma). Show that each point of the convex hull of an arbitrary figure $\Phi \subset \mathbb{R}^n$ is a convex combination of at most (n + 1) points of Φ .
- AG3 \diamond 15 (Rhadon's lemma). Show that any finite set of $\geq (n + 2)$ distinct points in \mathbb{R}^n is a disjoint union of two non-empty subsets with intersecting convex hulls.
- AG3 \diamond 16 (Helly's theorem). Given a finite collection of closed convex figures in \mathbb{R}^n such that at least one of them is compact and any (n + 1) figures have non-empty intersection, show that the intersection of all the figures is non-empty.

Regular polyhedrons. Given a polyhedron $M \subset \mathbb{R}^n$, *a group of* M is defined as a group of all bijections $M \cong M$ induced by all euclidean linear automorphisms⁶ of \mathbb{R}^n . Any sequence: vertex of M, edge of M outgoing from this vertex, 2-dimensional face of M outgoing from this edge, ..., a hyper-face of M outgoing from theis (n-1)-dimensional face, M itself (all intermediate dimensions have to appear) is called *a flag* of M. A polyhedron M is called *regular*, if the group of M acts transitively on the flags of M. Given a regular polyhedron $P \subset \mathbb{R}^n$, we write $\ell = \ell(P)$ for the length of its edge, write r = r(P) for the radius of its superscribed sphere, and put $\varrho = \varrho(P) \stackrel{\text{def}}{=} \ell^2/4r^2$. In all the problems below assume that a regular polyhedron $P \subset \mathbb{R}^n$ linearly spans the whole vector space.

- **AG3**◆17 (the star). Show that all vertexes of *P* joint with a given vertex $p \in P$ by an edge of *P* form a regular polyhedron in an (n-1)-dimensional affine subspace of \mathbb{R}^n . It is called *a star* of *P* and is denoted by st(*P*).
- AG3 ◆18 (the symbol). Schläfli's symbol of a regular polyhedron $P ⊂ ℝ^n$ is a collection of (n 1) positive integers $v(P) = (v_1(P), v_2(P), ..., v_{n-1}(P))$, defined inductively as follows: $v_1(P)$ equals the number of edges of 2-dimensional face of P and the rest sub-sequence $(v_2(P), ..., v_{n-1}(P)) = v(st(P))$ is the Schläfli symbol of the star st(P). Find the symbols of regular: **a**) dodecahedron in $ℝ^3$ **b**) icosahedron in $ℝ^3$ **c**) n-dimensional simplex **d**) n-dimensional cube **e**) n-dimensional cocube⁷.

AG319. Express $\ell(\operatorname{st}(P))$ through $\ell(P)$ and $\nu_1(P)$.

AG320. Show that $\varrho(P)$ depends only on the symbol of *P* and satisfies the equality

$$\varrho(P) = 1 - \left(\cos^2\left(\pi/\nu_1(P)\right)\right) / \left(\varrho\left(\operatorname{st}(P)\right)\right) .$$

- **AG3**◆21 (duality). Let $P \subset \mathbb{R}^n$ be a regular polyhedron with the centre at the origin. a) Show that $P^* = \{\xi \in \mathbb{R}^{n*} \mid \xi(v) \ge -1 \forall v \in P\}$ a regular polyhedron with the centre at the origin. b) For each *k* construct a canonical bijection between *k*-dimensional spaces of *P* and (n k 1)-dimensional faces of *P*^{*} reversing the inclusions of faces. c) Prove that the symbol of *P*^{*} is the symbol of *P* read from the right to the left.
- **AG322** (clasification of regular polyhedrons). Show that the symbols of all regular polyhedrons $P \subset \mathbb{R}^n$ are contained in the following list:
 - **a)** (ν), where $\nu \ge 3$ is any positive integer, for n = 2
 - **b)** (3, 3), (3, 4), (4, 3), (3, 5), (5, 3),for n = 3
 - **c)** (3, 3, 3), (3, 3, 4), (4, 3, 3), (3, 4, 3), (3, 3, 5), (5, 3, 3),for n = 4
 - **d)** $(3, \ldots, 3), (3, \ldots, 3, 4), (4, 3, \ldots, 3)$ for $n \ge 5$

and for each symbol in the list there exists a unique up to dilatation regular polyhedron that has this symbol.

⁶we asume that \mathbb{R}^n is equipped with the standard euclidean structure $|x|^2 = \sum x_i^2$

⁷that is, the convex hull of centres of the hyper-faces of the cube