## Set 1. Convexity.

AG3 $\diamond \mathbf{1}$ (centre of mass). Show that
a) for any collection of points $Q_{1}, Q_{2}, \ldots, Q_{m} \in \mathbb{A}^{2}$ and any collection of constants ${ }^{1} \mu_{1}, \mu_{2}, \ldots, \mu_{m} \in \mathbb{k}$ such that $\sum_{i=1}^{m} \mu_{i}=\mu \neq 0 \quad$ there exists a unique point $M \in \mathbb{A}^{2}$ such that $\left.\mu_{1} \overrightarrow{M Q}_{1}+\mu_{2} \overrightarrow{M Q}_{2}+\cdots+\mu_{m} \overrightarrow{M Q}_{m}=0 . \mathbf{b}\right)$ for any point $P \in \mathbb{A}^{2}$ the point $M$ equals $M=P+\sum_{i=1}^{m} \frac{\mu_{i}}{\mu} \cdot \overrightarrow{P Q}_{i}$.
AG3 $\diamond 2$ (grouping masses). Let a finite collection of points $Q_{i}$ with masses $\mu_{i} \in \mathbb{k}$ and a finite collection of points $T_{j}$ with masses $v_{j}$ have centres of mass at points $M$ and $N$ respetively. Assume that all three sums $\sum \mu_{i}, \sum v_{j}, \sum \mu_{i}+\sum v_{j}$ are non-zeros. Show that centre of mass for the union of all points ${ }^{2} Q_{i}$ and $T_{j}$ coincides with the centre of mass of two points $M, N$, taken with the masses $\sum \mu_{i}$ and $\sum v_{j}$.
AG3 $\diamond$. Give an example of a closed figure $\Phi$ with non-empty interior $\Phi^{\circ}$ such that $\overline{\Phi^{\circ}} \neq \Phi$. Is it possible, if $\Phi$ is convex?
AG3 $\diamond$ 4. Give an example of a closed convex figure with a non-closed set of $\quad$ a) vertexes ${ }^{3}$ b) extremal points ${ }^{4}$.

## Set 2. Polyhedrons and cones.

AG3 $\triangleright$. Let a convex polyhedral cone $\sigma \in \mathbb{R}^{3}$ span the whole vector space. Show that $\sigma$ and $\sigma^{v}$ ee have the same number of 1-dimensional edges. Give an example of polyhedral cone $\sigma \in \mathbb{R}^{4}$ such that $\sigma$ and $\sigma^{\vee}$ have different numbers of 1-dimensional edges.
AG3 $\diamond$ 6. Show that a convex subspace $\eta$ of a convex polyhedral cone $\sigma$ is a face iff the following equivalence holds: $\forall v_{1}, v_{2} \in \sigma v_{1}+v_{2} \in \eta \Longleftrightarrow v_{1}, v_{2} \in \eta$.
AG3 $\triangleleft 7$. Show that any proper face $\tau$ of a convex polyhedral cone $\sigma$ : a) is contained in some hyper-face ${ }^{5}$ of $\sigma \quad \mathbf{b}$ ) coincides with the intersection of all hyper-faces of $\sigma$ containing $\tau$.
AG3 $\diamond 8$. Let a convex polyhedral cone $\sigma \subsetneq V$ be generated by vectors $v_{1}, v_{2}, \ldots, v_{N}$ that linearly span $V$, and $\operatorname{dim} V=n$. Prove that: a) the boundary $\partial \sigma$ is a union of all hyper-faces of $\sigma$
b) covectors $\xi_{\tau} \in V^{*}$ annihilating the hyper-surfaces $\sigma \subset \tau$ are contained in a finite set $M \subset V^{*}$ described as follows: list all the linearly independent collections of $(n-1)$ vectors $v_{v}$; for each such collection find $\xi \in V^{*}$ that spans its annihilator; if for all generators $v_{i}, 1 \leqslant i \leqslant N,\left\langle\xi, v_{i}\right\rangle>0$, then include $\xi$ in $M$, else if for all $v_{i}\left\langle\xi, v_{i}\right\rangle<0$, then include $-\xi$ in $M$, otherwise omit this $\xi$.
c) $\sigma=\cap_{\tau} H_{\xi_{\tau}}^{+}$, where $\tau \subset \sigma$ runs through the hyper-faces of $\sigma$.

AG3 $\diamond 9$. Let $\xi \in \sigma^{\vee}$ and $\tau=\operatorname{Ann}(\xi) \cap \sigma$. Prove that $\tau^{\vee}=\left\{\zeta-\lambda \xi \mid \zeta \in \sigma^{\vee}, \lambda \geqslant 0\right\}$.
AG3 $\Delta \mathbf{1 0}$. Let convex polyhedral cones $\sigma_{1}$ and $\sigma_{2}$ intersect each other precisely along a common face $\tau$. Show that there exists $\xi \in \sigma_{1}^{\vee} \cap\left(-\sigma_{2}\right)^{\vee}$ such that $\tau=\sigma_{1} \cap \operatorname{Ann}(\xi)=\sigma_{2} \cap \operatorname{Ann}(\xi)$.
AG3 $\diamond 11$. Show that any two vertexes of any convex polyhedron are connected by some pass formed from 1-dimensional edges.
AG3 $\diamond 12$. Assume that a convex polyhedron $M \subset \mathbb{A}(V)$ does not contain affine subspaces of positive dimension. For each vertex $p \in M$ write $\sigma_{p} \subset V$ for a cone spanned by all the edges of $M$ outgoing from $p$. Show that: a) $M_{\infty}=\bigcap_{p} \sigma_{p} \quad$ b) $M \subset p+\sigma_{p}$ for ny vertex $p$.

[^0]AG3 $\diamond$ 13. Let $M \subset \mathbb{A}(V)$ be a convex polyhedron with vertexes and covector $\xi \in V^{*}$ be bounded below on $M$. Show that: a) there exist a vertex $p \in M$ such that $\forall x \in M\langle\xi, x\rangle \geqslant\langle x i, p\rangle$
b) a vertex $p \in M$ satisfies the above property iff $\langle\xi, q\rangle \geqslant\langle x i, p\rangle$ for each edge $[p, q] \subset M$ outgoing from $p$ (including those having $q$ at infinity).

## Honorary problems

AG3 $\diamond 14$ (Caratheodori's lemma). Show that each point of the convex hull of an arbitrary figure $\Phi \subset \mathbb{R}^{n}$ is a convex combination of at most $(n+1)$ points of $\Phi$.
AG3 $\diamond 15$ (Rhadon's lemma). Show that any finite set of $\geqslant(n+2)$ distinct points in $\mathbb{R}^{n}$ is a disjoint union of two non-empty subsets with intersecting convex hulls.
AG3 $\diamond 16$ (Helly's theorem). Given a finite collection of closed convex figures in $\mathbb{R}^{n}$ such that at least one of them is compact and any $(n+1)$ figures have non-empty intersection, show that the intersection of all the figures is non-empty.
Regular polyhedrons. Given a polyhedron $M \subset \mathbb{R}^{n}$, a group of $M$ is defined as a group of all bijections $M \leadsto M$ induced by all euclidean linear automorphisms ${ }^{6}$ of $\mathbb{R}^{n}$. Any sequence: vertex of $M$, edge of $M$ outgoing from this vertex, 2-dimensional face of $M$ outgoing from this edge, $\ldots$, a hyper-face of $M$ outgoing from theis ( $n-1$ )-dimensional face, $M$ itself (all intermediate dimensions have to appear) is called a flag of $M$. A polyhedron $M$ is called regular, if the group of $M$ acts transitively on the flags of $M$. Given a regular polyhedron $P \subset \mathbb{R}^{n}$, we write $\ell=\ell(P)$ for the length of its edge, write $r=r(P)$ for the radius of its superscribed sphere, and put $\varrho=\varrho(P) \stackrel{\text { def }}{=} \ell^{2} / 4 r^{2}$. In all the problems below assume that a regular polyhedron $P \subset \mathbb{R}^{n}$ linearly spans the whole vector space.

AG3 $\diamond 17$ (the star). Show that all vertexes of $P$ joint with a given vertex $p \in P$ by an edge of $P$ form a regular polyhedron in an ( $n-1$ )-dimensional affine subspace of $\mathbb{R}^{n}$. It is called $a$ star of $P$ and is denoted by $\operatorname{st}(P)$.
AG3 $\Delta 18$ (the symbol). Schläfli's symbol of a regular polyhedron $P \subset \mathbb{R}^{n}$ is a collection of $(n-1)$ positive integers $v(P)=\left(v_{1}(P), v_{2}(P), \ldots, v_{n-1}(P)\right)$, defined inductively as follows: $v_{1}(P)$ equals the number of edges of 2-dimensional face of $P$ and the rest sub-sequence $\left(v_{2}(P), \ldots, v_{n-1}(P)\right)=v(\operatorname{st}(P))$ is the Schläfli symbol of the star st $(P)$. Find the symbols of regular: a) dodecahedron in $\mathbb{R}^{3} \quad \mathbf{b}$ ) icosahedron

AG3 $\diamond$ 19. Express $\ell(\operatorname{st}(P))$ through $\ell(P)$ and $v_{1}(P)$.
AG3 $\triangleleft \mathbf{2 0}$. Show that $\varrho(P)$ depends only on the symbol of $P$ and satisfies the equality

$$
\varrho(P)=1-\left(\cos ^{2}\left(\pi / v_{1}(P)\right)\right) /(\varrho(\operatorname{st}(P))) .
$$

AG3 $\diamond 21$ (duality). Let $P \subset \mathbb{R}^{n}$ be a regular polyhedron with the centre at the origin. a) Show that $P^{*}=\left\{\xi \in \mathbb{R}^{n *} \mid \xi(v) \geqslant-1 \forall v \in P\right\}$ a regular polyhedron with the centre at the origin. b) For each $k$ construct a canonical bijection between $k$-dimensional spaces of $P$ and $(n-k-1)$-dimensional faces of $P^{*}$ reversing the inclusions of faces. c) Prove that the symbol of $P^{*}$ is the symbol of $P$ read from the right to the left.
AG3 $\diamond 22$ (clasification of regular polyhedrons). Show that the symbols of all regular polyhedrons $P \subset \mathbb{R}^{n}$ are contained in the following list:
a) (v), where $v \geqslant 3$ is any positive integer, for $n=2$
b) $(3,3),(3,4),(4,3),(3,5),(5,3)$, for $n=3$
c) $(3,3,3),(3,3,4),(4,3,3),(3,4,3),(3,3,5),(5,3,3)$, for $n=4$
d) $(3, \ldots, 3),(3, \ldots, 3,4),(4,3, \ldots, 3)$ for $n \geqslant 5$
and for each symbol in the list there exists a unique up to dilatation regular polyhedron that has this symbol.

[^1]
[^0]:    ${ }^{1}$ these constants are called «masses»
    ${ }^{2}$ «union» of coinciding points means adding their masses
    ${ }^{3}$ recall that $a$ vertex of a convex figure is a face of dimension zero, that is one point intersection with some supporting hyperplane ${ }^{4}$ recall that a point $p$ of a convex figure $\Phi$ is called extremal if there are no segments $[a, b] \subset \Phi$ such that $p$ is an interior point of $[a, b]$
    ${ }^{5}$ that is a face of codimension 1

[^1]:    ${ }^{6}$ we asume that $\mathbb{R}^{n}$ is equipped with the standard euclidean structure $|x|^{2}=\sum x_{i}^{2}$
    ${ }^{7}$ that is, the convex hull of centres of the hyper-faces of the cube

