Set 1. Tensors.

- **AG2**◇1. Let dim V = 3. Write $S \subset \mathbb{P}_5 = \mathbb{P}(S^2V^*)$ for a variety of singular conics in $\mathbb{P}_2 = \mathbb{P}(V)$. Show that **a**) *S* is an algebraic hypersurface (and find the degree of *S*)
 - **b)** point $C \in S$ is a smooth point of *S* iff the corresponding conic $C \subset \mathbb{P}_n$ is a pair of crossing lines
 - c) tangent space $T_c S \subset \mathbb{P}_5$ at a smooth point $C \in S$ consists of all conics in \mathbb{P}_2 passing through the singular point $\ell_1 \cap \ell_2$ of $C = \ell_1 \cup \ell_2$.
- AG2 \diamond 3 (spinor decomposition). Let $V = \text{Hom}(U_{-}, U_{+})$, where dim $U_{\pm} = 2$. Show that canonical direct sum decomposition of $V \otimes V$ into symmetric and skew symmetric parts looks like

$$\underbrace{\left(\left(S^{2}U_{-}^{*}\otimes S^{2}U_{+}\right)\oplus\left(\Lambda^{2}U_{-}^{*}\otimes \Lambda^{2}U_{+}\right)\right)}_{S^{2}V}\bigoplus\underbrace{\left(\left(S^{2}U_{-}^{*}\otimes \Lambda^{2}U_{+}\right)\oplus\left(\Lambda^{2}U_{-}^{*}\otimes S^{2}U_{+}\right)\right)}_{\Lambda^{2}V}$$

AG2 \diamond 4. For vector spaces *U*, *V* of finite dimensions construct canonical isomorphisms

 $\operatorname{Hom}(U \otimes \operatorname{Hom}(U, W), W) \simeq \operatorname{End}(\operatorname{Hom}(U, W)) \simeq \operatorname{Hom}(U, W \otimes \operatorname{Hom}(U, W)^*)$

and describe an element of End(Hom(U, W)) corresponding to a mapping $U \otimes \text{Hom}(U, W) \to W$ that takes $u \otimes \varphi \mapsto \varphi(u)$.

AG2 \$ 5. For vector spaces U, V, W of finite dimensions construct canonical isomorphism

$$\operatorname{End}(U \otimes V \otimes W) \simeq \operatorname{Hom}(\operatorname{Hom}(U, V) \otimes \operatorname{Hom}(V, W), \operatorname{Hom}(U, W))$$

and describe a linear map $\text{Hom}(U, V) \otimes \text{Hom}(V, W) \rightarrow \text{Hom}(U, W)$ corresponding to the identity endomorphism Id $\in \text{End}(U \otimes V \otimes W)$.

AG26. Let $G = V(g) \subset \mathbb{P}_3 = \mathbb{P}(V)$ be a smooth quadric. Define a bilinear form $\Lambda^2 \widetilde{g}$ on $\Lambda^2 V$ by prescription

$$\Lambda^2 \widetilde{g}(v_1 \wedge v_2, w_1 \wedge w_2) \stackrel{\text{def}}{=} \det \begin{pmatrix} \widetilde{g}(v_1, w_1) & \widetilde{g}(v_1, w_2) \\ \widetilde{g}(v_2, w_1) & \widetilde{g}(v_2, w_2) \end{pmatrix} ,$$

a) Show that $\Lambda^2 \tilde{g}$ is symmetric and non-degenerated.

b) Write down an explicit Gram matrix of $\Lambda^2 \tilde{g}$ in a standard monomial basis of $\Lambda^2 \tilde{g}$ built from an orthonormal¹ basis of *V*

Set 2. Plücker – Segre – Veronese interaction.

- **AG2**◆7. In the assumptions and notations of prb. AG2◆3 and prb. AG2◆6 take $g(A) = \det A$ as the quadratic form on the space $V = \operatorname{Hom}(U_{-}, U_{+})$. Write $\Lambda^2 g$ for the smooth quadratic form on $\Lambda^2 V$ that sends $v_1 \wedge v_2$ to the Gram determinant det $\begin{pmatrix} \widetilde{g}(v_1, v_1) & \widetilde{g}(v_1, v_2) \\ \widetilde{g}(v_2, v_1) & \widetilde{g}(v_2, v_2) \end{pmatrix}$ and write $P = \{\omega \in \Lambda^2 V \mid \omega \wedge \omega = 0\} \subset \mathbb{P}_5 = \mathbb{P}(\Lambda^2 V)$ for the Plücker quadric. Show that
 - a) the intersection of quadrics $V(\Lambda^2 g) \cap P \subset \mathbb{P}_5$ consists of all lines in $\mathbb{P}_3 = \mathbb{P}(V)$ tangent to the Segre quadric $G = V(g) \subset \mathbb{P}_3$.

¹that is, having the unit Gram matrix

- **b)** the Plücker embedding $Gr(2, V) \cong P \subset \mathbb{P}(\Lambda^2 V)$ sends two line rulings of the Segre quadric *G* to a pair of distinct smooth conics $C_{\pm} \subset P$ that are cut out of the Plücker quadric by a pair of complementary planes $\Lambda_{-} = \mathbb{P}\left(S^2 U_{-}^* \otimes \Lambda^2 U_{+}\right)$ and $\Lambda_{+} = \mathbb{P}\left(\Lambda^2 U_{-}^* \otimes S^2 U_{+}\right)$ embedded into $\mathbb{P}(\Lambda^2 \operatorname{Hom}(U_{-}, U_{+}))$ via prb. AG2\$3
- c) both conics $C_{-} \subset \mathbb{P}\left(S^{2}U_{-}^{*} \otimes \Lambda^{2}U_{+}\right)$ and $C_{+} \subset \mathbb{P}\left(\Lambda^{2}U_{-}^{*} \otimes S^{2}U_{+}\right)$ are the images of the Veronese embeddings $\mathbb{P}(U_{-}^{*}) \subset \mathbb{P}\left(S^{2}U_{-}^{*}\right)$ and $\mathbb{P}(U_{+}) \subset \mathbb{P}\left(S^{2}U_{+}\right)$, i.e. we have the following commutative diagram of the Plücker – Segre – Veronese interactions²:

$$*:\Lambda^2V\xrightarrow{\omega\mapsto\omega^*}\Lambda^2V,$$

defined by prescription $\forall \omega_1, \omega_2 \in \Lambda^2 V \quad \omega_1 \wedge \omega_2^* = \Lambda^2 \tilde{g}(\omega_1, \omega_2) \cdot e_1 \wedge e_2 \wedge e_3 \wedge e_4$, where $e_1, e_2, e_3, e_4 \in V$ is an orthonormal basis for g. Verify that this definition does not depend on a choice of orthonormal basis, find eigenvalues and eigenspaces of *, and show their place in the previous picture.

Honorary problems

AG28. Generalise prb. AG2**1** onto the variety of singular quadrics in \mathbb{P}_n for any *n*. **AG29.** Prove the following Taylor expansion for the polynomial det(*A*) on the space of $n \times n$ -matrices:

$$\det(\lambda A + \mu B) = \sum_{p+q=n} \lambda^p \mu^q \cdot \operatorname{tr} \left(\Lambda^p A \cdot \Lambda^q B^t \right) \,,$$

where $\Lambda^{p}A$, $\Lambda^{q}B$ are the matrices of operators induced by A, B on the spaces of homogeneous grassmannian polynomials of degrees p, q (matrix elements of $\Lambda^p A$, $\Lambda^q B$ are $p \times p$ and $q \times q$ minors of A, B numbered in such a way that complementary minors have equal numbers).

AG210 (De Rahm's and Koszul's complexes). Choose a basis $e_1, e_2, \ldots, e_n \in V$ and write $x_i \in SV, \xi_i \in AV$ for the classes of e_i in symmetric and exterior algebras respectively. Let $A = AV \otimes SV$. Consider two linear mappings: the De Rahm differential $d = \sum \xi_v \otimes \frac{\partial}{\partial x_v} : A \to A$ that takes $\omega \otimes f \mapsto \sum_v \xi_v \wedge \omega \otimes \frac{\partial f}{\partial x_v}$ and the Koszul differential $\partial = \sum \frac{\partial}{\partial \xi_v} \otimes x_v : A \to A$ that takes $\omega \otimes f \mapsto \sum_v \frac{\partial \omega}{\partial \xi_v} \otimes x_v \cdot f$.

- a) Show that *d* and ∂ do not depend on a choice of basis and satisfy $d^2 = 0$, $\partial^2 = 0$.
- **b)** Compute $d\partial + \partial d$.
- c) (Poincare lemma) Show that both homology spaces ker d/im d and ker $\partial/\text{im } \partial$ are 1-dimensional, exhausted by the classes of constants $\mathbb{k} \cdot 1 \otimes 1 \subset A$.

²Plücker is dashed, because it takes lines to points