Set 1. Tensors.

AG2 \diamond 1. Let $\operatorname{dim} V=3$. Write $S \subset \mathbb{P}_{5}=\mathbb{P}\left(S^{2} V^{*}\right)$ for a variety of singular conics in $\mathbb{P}_{2}=\mathbb{P}(V)$. Show that
a) S is an algebraic hypersurface (and find the degree of S)
b) point $C \in S$ is a smooth point of S iff the corresponding conic $C \subset \mathbb{P}_{n}$ is a pair of crossing lines
c) tangent space $T_{C} S \subset \mathbb{P}_{5}$ at a smooth point $C \in S$ consists of all conics in \mathbb{P}_{2} passing through the singular point $\ell_{1} \cap \ell_{2}$ of $C=\ell_{1} \cup \ell_{2}$.
AG2 $\diamond 2$ (Aronhold's principle). For a finite dimensional vector space V over a field of zero characteristic show that perfect nth tensor powers $v^{\otimes n}=v \otimes v \otimes \cdots \otimes v$, where $v \in V$, span the subspace of all symmetric tensors $\operatorname{Sym}^{n}(V) \subset V^{\otimes n}$ and explicitly represent symmetric tensor $u \otimes w \otimes w+w \otimes u \otimes w+$ $w \otimes w \otimes u$, where $u, w \in V$ are non-proportional, as a linear combination of proper tensor cubes.
AG $2 \diamond 3$ (spinor decomposition). Let $V=\operatorname{Hom}\left(U_{-}, U_{+}\right)$, where $\operatorname{dim} U_{ \pm}=2$. Show that canonical direct sum decomposition of $V \otimes V$ into symmetric and skew symmetric parts looks like

$$
\underbrace{\left(\left(S^{2} U_{-}^{*} \otimes S^{2} U_{+}\right) \oplus\left(\Lambda^{2} U_{-}^{*} \otimes \Lambda^{2} U_{+}\right)\right)}_{S^{2} V} \bigoplus \underbrace{\left(\left(S^{2} U_{-}^{*} \otimes \Lambda^{2} U_{+}\right) \oplus\left(\Lambda^{2} U_{-}^{*} \otimes S^{2} U_{+}\right)\right)}_{\Lambda^{2} V} .
$$

AG2 \diamond 4. For vector spaces U, V of finite dimensions construct canonical isomorphisms

$$
\operatorname{Hom}(U \otimes \operatorname{Hom}(U, W), W) \simeq \operatorname{End}(\operatorname{Hom}(U, W)) \simeq \operatorname{Hom}\left(U, W \otimes \operatorname{Hom}(U, W)^{*}\right)
$$

and describe an element of $\operatorname{End}(\operatorname{Hom}(U, W))$ corresponding to a mapping $U \otimes \operatorname{Hom}(U, W) \rightarrow W$ that takes $u \otimes \varphi \mapsto \varphi(u)$.
AG2 \diamond. For vector spaces U, V, W of finite dimensions construct canonical isomorphism

$$
\operatorname{End}(U \otimes V \otimes W) \simeq \operatorname{Hom}(\operatorname{Hom}(U, V) \otimes \operatorname{Hom}(V, W), \operatorname{Hom}(U, W))
$$

and describe a linear map $\operatorname{Hom}(U, V) \otimes \operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}(U, W)$ corresponding to the identity endomorphism Id $\in \operatorname{End}(U \otimes V \otimes W)$.
AG2 \diamond. Let $G=V(g) \subset \mathbb{P}_{3}=\mathbb{P}(V)$ be a smooth quadric. Define a bilinear form $\Lambda^{2} \widetilde{g}$ on $\Lambda^{2} V$ by prescription

$$
\Lambda^{2} \widetilde{g}\left(v_{1} \wedge v_{2}, w_{1} \wedge w_{2}\right) \stackrel{\text { def }}{=} \operatorname{det}\left(\begin{array}{ll}
\widetilde{g}\left(v_{1}, w_{1}\right) & \widetilde{g}\left(v_{1}, w_{2}\right) \\
\widetilde{g}\left(v_{2}, w_{1}\right) & \widetilde{g}\left(v_{2}, w_{2}\right)
\end{array}\right),
$$

a) Show that $\Lambda^{2} \widetilde{g}$ is symmetric and non-degenerated.
b) Write down an explicit Gram matrix of $\Lambda^{2} \widetilde{g}$ in a standard monomial basis of $\Lambda^{2} \widetilde{g}$ built from an orthonormal ${ }^{1}$ basis of V

Set 2. Plücker-Segre - Veronese interaction.

AG $2 \diamond 7$. In the assumptions and notations of prb. AG $2 \diamond 3$ and prb. AG $2 \diamond 6$ take $g(A)=\operatorname{det} A$ as the quadratic form on the space $V=\operatorname{Hom}\left(U_{-}, U_{+}\right)$. Write $\Lambda^{2} g$ for the smooth quadratic form on $\Lambda^{2} V$ that sends $v_{1} \wedge v_{2}$ to the Gram determinant $\operatorname{det}\left(\begin{array}{ll}\widetilde{g}\left(v_{1}, v_{1}\right) & \widetilde{g}\left(v_{1}, v_{2}\right) \\ \widetilde{g}\left(v_{2}, v_{1}\right) & \widetilde{g}\left(v_{2}, v_{2}\right)\end{array}\right)$ and write $P=\left\{\omega \in \Lambda^{2} V \mid \omega \wedge \omega=0\right\} \subset \mathbb{P}_{5}=\mathbb{P}\left(\Lambda^{2} V\right)$ for the Plücker quadric. Show that
a) the intersection of quadrics $V\left(\Lambda^{2} g\right) \cap P \subset \mathbb{P}_{5}$ consists of all lines in $\mathbb{P}_{3}=\mathbb{P}(V)$ tangent to the Segre quadric $G=V(g) \subset \mathbb{P}_{3}$.

[^0]b) the Plücker embedding $\operatorname{Gr}(2, V) \xrightarrow{\rightarrow} P \subset \mathbb{P}\left(\Lambda^{2} V\right)$ sends two line rulings of the Segre quadric G to a pair of distinct smooth conics $C_{ \pm} \subset P$ that are cut out of the Plücker quadric by a pair of complementary planes $\Lambda_{-}=\mathbb{P}\left(S^{2} U_{-}^{*} \otimes \Lambda^{2} U_{+}\right)$and $\Lambda_{+}=\mathbb{P}\left(\Lambda^{2} U_{-}^{*} \otimes S^{2} U_{+}\right)$embedded into $\mathbb{P}\left(\Lambda^{2} \operatorname{Hom}\left(U_{-}, U_{+}\right)\right)$ via prb. AG2॰3
c) both conics $C_{-} \subset \mathbb{P}\left(S^{2} U_{-}^{*} \otimes \Lambda^{2} U_{+}\right)$and $C_{+} \subset \mathbb{P}\left(\Lambda^{2} U_{-}^{*} \otimes S^{2} U_{+}\right)$are the images of the Veronese embeddings $\mathbb{P}\left(U_{-}^{*}\right) \subset \mathbb{P}\left(S^{2} U_{-}^{*}\right)$ and $\mathbb{P}\left(U_{+}\right) \subset \mathbb{P}\left(S^{2} U_{+}\right)$, i.e. we have the following commutative diagram of the Plücker - Segre - Veronese interactions ${ }^{2}$:

d) (Hodge's star) Associated with smooth quadretic form g on V is the Hodge star-operator
$$
: \Lambda^{2} V \xrightarrow{\omega \mapsto \omega^{}} \Lambda^{2} V,
$$
defined by prescription $\forall \omega_{1}, \omega_{2} \in \Lambda^{2} V \quad \omega_{1} \wedge \omega_{2}^{*}=\Lambda^{2} \widetilde{g}\left(\omega_{1}, \omega_{2}\right) \cdot e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}$, where $e_{1}, e_{2}, e_{3}, e_{4} \in V$ is an orthonormal basis for g. Verify that this definition does not depend on a choice of orthonormal basis, find eigenvalues and eigenspaces of $*$, and show their place in the previous picture.

Honorary problems

AG2 $\diamond 8$. Generalise prb. AG2 $\diamond 1$ onto the variety of singular quadrics in \mathbb{P}_{n} for any n.
AG2 $\diamond 9$. Prove the following Taylor expansion for the polynomial $\operatorname{det}(A)$ on the space of $n \times n$-matrices:

$$
\operatorname{det}(\lambda A+\mu B)=\sum_{p+q=n} \lambda^{p} \mu^{q} \cdot \operatorname{tr}\left(\Lambda^{p} A \cdot \Lambda^{q} B^{t}\right),
$$

where $\Lambda^{p} A, \Lambda^{q} B$ are the matrices of operators induced by A, B on the spaces of homogeneous grassmannian polynomials of degrees p, q (matrix elements of $\Lambda^{p} A, \Lambda^{q} B$ are $p \times p$ and $q \times q$ minors of A, B numbered in such a way that complementary minors have equal numbers).
AG2 $\diamond 10$ (De Rahm's and Koszul's complexes). Choose a basis $e_{1}, e_{2}, \ldots, e_{n} \in V$ and write $x_{i} \in S V, \xi_{i} \in \Lambda V$ for the classes of e_{i} in symmetric and exterior algebras respectively. Let $A=\Lambda V \otimes S V$. Consider two linear mappings: the De Rahm differential $d=\sum \xi_{v} \otimes \frac{\partial}{\partial x_{v}}: A \rightarrow A$ that takes $\omega \otimes f \mapsto \sum_{v} \xi_{v} \wedge \omega \otimes \frac{\partial f}{\partial x_{v}}$ and the Koszul differential $\partial=\sum \frac{\partial}{\partial \xi_{v}} \otimes x_{v}: A \rightarrow A$ that takes $\omega \otimes f \mapsto \sum_{v} \frac{\partial \omega}{\partial \xi_{v}} \otimes x_{v} \cdot f$.
a) Show that d and ∂ do not depend on a choice of basis and satisfy $d^{2}=0, \partial^{2}=0$.
b) Compute $d \partial+\partial d$.
c) (Poincare lemma) Show that both homology spaces $\operatorname{ker} d / \operatorname{im} d$ and $\operatorname{ker} \partial / \operatorname{im} \partial$ are 1-dimensional, exhausted by the classes of constants $\mathbb{k} \cdot 1 \otimes 1 \subset A$.

[^1]
[^0]: ${ }^{1}$ that is, having the unit Gram matrix

[^1]: ${ }^{2}$ Plücker is dashed, because it takes lines to points

