Set 1. Projective spaces.

AG1 $\diamond 1$. Let the ground field \mathbb{k} consist of q elements. Find the total number of k-dimensional a) vector subspaces in $\mathbb{k}^{n} \quad$ b) affine subspaces in $\mathbb{A}^{n} \quad$ c) projective subspaces in \mathbb{P}_{n}. (Hint: to begin with, take $k=0,1,2, \ldots$)

AG1 $\triangleright 2$. Compute the limits of the previous answers as $q \rightarrow 1$.
AG1 $\diamond 3$. Find a geometric condition on 3 lines $\ell_{1}, \ell_{2}, \ell_{3}$ in $\mathbb{P}_{2}=\mathbb{P}(V)$ necessary and sufficient for existence a coordinate system in V such that each ℓ_{i} becomes the infinite line for the standard chart $U_{i}=U_{x_{i}}$ in these coordinates.
AG1 \diamond. Given a line ℓ and a point $p \notin \ell$, is it possible to draw the line parallel to ℓ and passing through p using only the ruler?
AG1 \triangleleft. There are two points on a wall and a ruler whose length is significantly shorter than a distance between the points. Draw a straight line joining the points.
AG1 \triangleleft. A point P and two non-parallel lines are drawn on a sheet of paper. The intersection point Q of the lines is far outside the sheet border. Using only the ruler, draw a part of line $P Q$ laying inside the sheet.
AG1 $\triangleleft 7$ (the Papus theorem). Let points a_{1}, b_{1}, c_{1} be collinear and poins a_{2}, b_{2}, c_{2} be collinear as well. Show that intersection points $\left(a_{1} b_{2}\right) \cap\left(a_{2} b_{1}\right),\left(b_{1} c_{2}\right) \cap\left(b_{2} c_{1}\right),\left(c_{1} a_{2}\right) \cap\left(c_{2} a_{1}\right)$ are collinear too.
AG1 $\diamond 8$. Formulate and prove the dual statement ${ }^{1}$ to the Papus theorem.
AG1 $\triangleleft 9$ (1st theorem of Dezargus). Given 2 triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ on \mathbb{P}_{2}, show that three intersection points $\left(A_{1} B_{1}\right) \cap\left(A_{2} B_{2}\right),\left(B_{1} C_{1}\right) \cap\left(B_{2} C_{2}\right),\left(C_{1} A_{1}\right) \cap\left(C_{2} A_{2}\right)$ are collinear iff three lines $\left(A_{1} A_{2}\right),\left(B_{1} B_{2}\right)$, $\left(C_{1} C_{2}\right)$ are intersecting at one point ${ }^{2}$.
Hint. For $\mathbb{k}=\mathbb{R}$ simplify the configuration by moving 3 intersection points to infinity, then use the Euclidean geometry. For an arbitrary \mathbb{k} investigate the fixed point set of the linear projective automorphism sending A_{1}, B_{1}, C_{1} to A_{2}, B_{2}, C_{2} and preserving the intersection point $\left(A_{1} A_{2}\right) \cap\left(B_{1} B_{2}\right) \cap\left(C_{1} C_{2}\right)$.
AG1 $\triangleleft \mathbf{1 0}$ (2nd theorem of Dezargus). Let a line ℓ pass through three distinct points p, q, r but do not contain any of three other distinct points a, b, c. Show that lines ($a p$), ($b q$), ($c r$) are intersecting at one point iff there exists an involution of ℓ that exchanges p, q, r with intersection points of ℓ with lines ($b c$), (ca), (ab) respectively.

Set 2. Conics and quadrics.

AG1 $\diamond 11$. Put real Euclidian plane \mathbb{R}^{2} into $\mathbb{C P}_{2}$ as the real part of the standard chart $U_{0}=\mathbb{C}^{2}$.
a) Find two points $A_{ \pm} \in \mathbb{C P}_{2}$ laying on all conics visible in \mathbb{R}^{2} as the circles.
b) Let a conic $C \subset \mathbb{C P}_{2}$ have at least 3 non-collinear points in \mathbb{R}^{2} and pass through $A_{ \pm}$. Show that $C \cap \mathbb{R}^{2}$ is a circle.
AG1 $\triangleright \mathbf{1 2}$. Given 5 lines without triple intersections on \mathbb{P}_{2}, how many conics do touch them all?
AG1 $\triangleright 13$. Consider a circle C in the real euclidean plane \mathbb{R}^{2} and write D for a disc bounded by C. Using ruler and compasses, draw a polar line to a given point $p \in D$ and find a pole of a given line ℓ that does not intersect C. (All the polarities are w.r.t. C.)
AG1 $\triangleright 14$. Using only the ruler, draw a line passing through a given point p and touching a given conic C. Consider two cases: a) $p \notin C \quad$ b) $p \in C$.
AG1 $1 \diamond$ 15. Line ($p q$) intersects conic C in points r, s. Assuming that all 4 points p, q, r, s are distinct, show that p lies on the polar line of q w.r.t. C iff $\{p, q\}$ are harmonic to $\{r, s\}$ (i.e. $[p, q ; r, s]=-1$).

[^0]AG1 $\diamond \mathbf{1 6}$. Given 4 mutually skew ${ }^{3}$ lines in 3D-space, how many lines does intersect them all? Consider the cases when 3D-space in question is: a) $\mathbb{C P}_{3} \quad$ b) $\mathbb{R} \mathbb{P}_{3} \quad$ c) affine \mathbb{C}^{3} d) affine \mathbb{R}^{3}. Find all possible answers and indicate those which are stable w.r.t. small perturbation of the 4 given lines.
AG1 $\triangleleft \mathbf{1 7}$. How many solutions have equations \quad a) $x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0 \quad$ b) $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=-1 \quad$ over the field \mathbb{F}_{9}, which consist of 9 elements $a+b \sqrt{-1}, a, b=-1,0,1$, added and multiplied modulo 3 .

Honorary problems

AG1 $\triangleright 18^{*}$. Using only the ruler, draw a triangle inscribed in a given smooth conic Q and with sides a, b, c passing through 3 given points A, B, C. How many solutions may have this problem?
Hint. Start 'naive' drawing from any $p \in Q$ and denote by $\gamma(p)$ the return point after passing trough A, B, C. Is the mapping $p \mapsto \gamma(p)$ a homography?
$\mathrm{AG} 1 \diamond \mathbf{1 9}^{*}$. Formulate and solve projectively dual problem to the previous one.
AG1 $\triangleleft \mathbf{0}^{*}$ (Rational normal curve). Verify that the following curves $C \subset \mathbb{P}_{d}$ can be moved isomorphically to each other by appropriate linear projective automorphisms of \mathbb{P}_{d}.
a) Write U for the space of linear forms $\alpha_{0} t_{0}+\alpha_{1} t_{1}$ in $\left(t_{0}, t_{1}\right)$ and use ($\alpha_{0}: \alpha_{1}$) as a homogeneous coordinate on $\mathbb{P}_{1}=\mathbb{P}(U)$. Also, consider the space $S^{d} U$, of homogeneous forms in $\left(t_{0}, t_{1}\right)$ of degree d, write these forms as $\sum_{n=0}^{d}\binom{d}{n} a_{n} t_{0}^{n} t_{1}^{d-n}$, where $\binom{n}{k}$ are the binomial coefficients, and use $\left(a_{0}: a_{1}: \ldots: a_{n}\right)$ as homogeneous coordinates on $\mathbb{P}_{d}=\mathbb{P}\left(S^{d} U\right)$. Then C is the image of the Veronese map $c_{d}: \mathbb{P}(U) \rightarrow \mathbb{P}\left(S^{d} U\right)$, which takes $\psi \mapsto \psi^{d}$.
b) In the notations from (a), $C \subset \mathbb{P}\left(S^{d} U\right)$ is given by the condition rk $\left(\begin{array}{ccccc}a_{0} & a_{1} & a_{2} & \ldots & a_{d-1} \\ a_{1} & a_{2} & a_{3} & \ldots & a_{d}\end{array}\right)=1$.
c) In the notations from (a), C is an image of any map $\mathbb{P}(U) \rightarrow \mathbb{P}\left(S^{d} U\right)$ given in homogeneous coordinates by a rule $t=\left(\alpha_{0}: \alpha_{1}\right) \longmapsto\left(f_{0}(\alpha): f_{1}(\alpha): \ldots: f_{d}(\alpha)\right)$, where $f_{0}, f_{1}, \ldots, f_{d}$ is any collection of linearly independent homogeneous polynomials in $\alpha=\left(\alpha_{0}, \alpha_{1}\right)$ of degree d.
d) Pick up a collection of $(d+1)$ distinct points $p_{0}, p_{1}, \ldots, p_{d} \in \mathbb{P}_{1}=\mathbb{P}\left(\mathbb{k}^{2}\right), p_{v}=\left(\alpha_{v}: \beta_{v}\right)$. Then C is the image of mapping $\varphi_{p_{0}, p_{1}, \ldots, p_{d}}: \mathbb{P}_{1} \rightarrow \mathbb{P}_{d}$ that takes

$$
x=\left(x_{0}: x_{1}\right) \mapsto\left(1 / \operatorname{det}\left(p_{0}, x\right): 1 / \operatorname{det}\left(p_{1}, x\right): \cdots: 1 / \operatorname{det}\left(p_{d}, x\right)\right),
$$

where $\operatorname{det}\left(p_{v}, x\right) \stackrel{\text { def }}{=} \alpha_{v} x_{1}-\beta_{v} x_{0}$.
e) Pick up any collection of $(d+3)$ distinct points $p_{1}, p_{2}, \ldots, p_{n}, a, b, c \in \mathbb{P}_{n}$ such that no $(n+1)$ of them lie in a shared hyperplane and write $\ell_{i} \simeq \mathbb{P}_{1}$ for a pencil of hyperplanes passing through all points p_{v} except for p_{i}. Points a, b, c provide the lines ℓ_{v} with compatible homographies

$$
\psi_{i j}: \ell_{j} \xlongequal{\Rightarrow} \ell_{i}
$$

sending 3 hyperplanes passing through a, b, c from the pencil ℓ_{j} to the similar 3 hyperplanes of ℓ_{i}. Then the curve C is drawn by the intersection point of d corresponding to each other hyperplanes of all the pencils: $C=\underset{H \in \ell_{1}}{\cup} H \cap \psi_{21}(H) \cap \ldots \cap \psi_{n 1}(H)$.

[^1]
[^0]: ${ }^{1}$ that holds in the dual space $\mathbb{P}_{2}^{\times}=\mathbb{P}\left(V^{*}\right)$ and dials with the annihilators of all the subspaces from the original statement
 ${ }^{2}$ pair of triangles with these properties is called perspective

[^1]: ${ }^{3}$ in projective space this means «non-intersecting», in affine space this means «not laying in a shared plane»

