Set 1. Projective spaces.

- AG1 \diamond 1. Let the ground field k consist of q elements. Find the total number of k-dimensional a) vector subspaces in \mathbb{k}^n b) affine subspaces in \mathbb{A}^n c) projective subspaces in \mathbb{P}_n . (Hint: to begin with, take k = 0, 1, 2, ...)
- **AG12.** Compute the limits of the previous answers as $q \rightarrow 1$.
- **AG13.** Find a geometric condition on 3 lines ℓ_1 , ℓ_2 , ℓ_3 in $\mathbb{P}_2 = \mathbb{P}(V)$ necessary and sufficient for existence a coordinate system in *V* such that each ℓ_i becomes the infinite line for the standard chart $U_i = U_{x_i}$ in these coordinates.
- **AG14.** Given a line ℓ and a point $p \notin \ell$, is it possible to draw the line parallel to ℓ and passing through p using only the ruler?
- AG1 5. There are two points on a wall and a ruler whose length is significantly shorter than a distance between the points. Draw a straight line joining the points.
- **AG16.** A point *P* and two non-parallel lines are drawn on a sheet of paper. The intersection point *Q* of the lines is far outside the sheet border. Using only the ruler, draw a part of line *PQ* laying inside the sheet.
- AG1 \diamond 7 (the Papus theorem). Let points a_1, b_1, c_1 be collinear and poins a_2, b_2, c_2 be collinear as well. Show that intersection points $(a_1b_2) \cap (a_2b_1)$, $(b_1c_2) \cap (b_2c_1)$, $(c_1a_2) \cap (c_2a_1)$ are collinear too.
- AG1 8. Formulate and prove the dual statement¹ to the Papus theorem.
- AG1>9 (1st theorem of Dezargus). Given 2 triangles $A_1B_1C_1$ and $A_2B_2C_2$ on \mathbb{P}_2 , show that three intersection points $(A_1B_1) \cap (A_2B_2)$, $(B_1C_1) \cap (B_2C_2)$, $(C_1A_1) \cap (C_2A_2)$ are collinear iff three lines (A_1A_2) , (B_1B_2) , (C_1C_2) are intersecting at one point².
 - Hint. For $\mathbb{k} = \mathbb{R}$ simplify the configuration by moving 3 intersection points to infinity, then use the Euclidean geometry. For an arbitrary \mathbb{k} investigate the fixed point set of the linear projective automorphism sending A_1 , B_1 , C_1 to A_2 , B_2 , C_2 and preserving the intersection point $(A_1A_2) \cap (B_1B_2) \cap (C_1C_2)$.
- AG1 \diamond 10 (2nd theorem of Dezargus). Let a line ℓ pass through three distinct points p, q, r but do not contain any of three other distinct points a, b, c. Show that lines (ap), (bq), (cr) are intersecting at one point iff there exists an involution of ℓ that exchanges p, q, r with intersection points of ℓ with lines (bc), (ca), (ab) respectively.

Set 2. Conics and quadrics.

- **AG111.** Put real Euclidian plane \mathbb{R}^2 into \mathbb{CP}_2 as the real part of the standard chart $U_0 = \mathbb{C}^2$.
 - a) Find two points $A_{\pm} \in \mathbb{CP}_2$ laying on all conics visible in \mathbb{R}^2 as the circles.
 - **b)** Let a conic $C \subset \mathbb{CP}_2$ have at least 3 non-collinear points in \mathbb{R}^2 and pass through A_{\pm} . Show that $C \cap \mathbb{R}^2$ is a circle.
- AG1 \diamond 12. Given 5 lines without triple intersections on \mathbb{P}_2 , how many conics do touch them all?
- **AG1**◇13. Consider a circle *C* in the real euclidean plane \mathbb{R}^2 and write *D* for a disc bounded by *C*. Using ruler and compasses, draw a polar line to a given point *p* ∈ *D* and find a pole of a given line ℓ that does not intersect *C*. (All the polarities are w.r.t. *C*.)
- **AG1**•14. Using only the ruler, draw a line passing through a given point p and touching a given conic C. Consider two cases: **a**) $p \notin C$ **b**) $p \in C$.
- **AG1•15.** Line (*pq*) intersects conic *C* in points *r*, *s*. Assuming that all 4 points *p*, *q*, *r*, *s* are distinct, show that *p* lies on the polar line of *q* w.r.t. *C* iff $\{p, q\}$ are harmonic to $\{r, s\}$ (i.e. [p, q; r, s] = -1).

¹that holds in the dual space $\mathbb{P}_2^{\times} = \mathbb{P}(V^*)$ and dials with the annihilators of all the subspaces from the original statement ²pair of triangles with these properties is called *perspective*

AG1 \diamond 16. Given 4 mutually skew³ lines in 3D-space, how many lines does intersect them all? Consider the cases when 3D-space in question is: a) \mathbb{CP}_3 b) \mathbb{RP}_3 c) affine \mathbb{C}^3 d) affine \mathbb{R}^3 . Find all possible answers and indicate those which are stable w.r.t. small perturbation of the 4 given lines.

AG1417. How many solutions have equations **a**) $x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0$ **b**) $x_1^2 + x_2^2 + x_3^2 = -1$ over the field \mathbb{F}_q , which consist of 9 elements $a + b\sqrt{-1}$, a, b = -1, 0, 1, added and multiplied modulo 3.

Honorary problems

- AG1 × 18^{*}. Using only the ruler, draw a triangle inscribed in a given smooth conic *Q* and with sides *a*, *b*, *c* passing through 3 given points *A*, *B*, *C*. How many solutions may have this problem?
 - Hint. Start `naive' drawing from any $p \in Q$ and denote by $\gamma(p)$ the return point after passing trough A, B, C. Is the mapping $p \mapsto \gamma(p)$ a homography?
- **AG1•19**^{*}. Formulate and solve projectively dual problem to the previous one.
- AG1 \diamond 20^{*} (Rational normal curve). Verify that the following curves $C \subset \mathbb{P}_d$ can be moved isomorphically to each other by appropriate linear projective automorphisms of \mathbb{P}_d .

a) Write U for the space of linear forms $\alpha_0 t_0 + \alpha_1 t_1$ in (t_0, t_1) and use $(\alpha_0 : \alpha_1)$ as a homogeneous coordinate on $\mathbb{P}_1 = \mathbb{P}(U)$. Also, consider the space $S^d U$, of homogeneous forms in (t_0, t_1) of degree d, write these forms as $\sum_{n=0}^{d} {\binom{d}{n}} a_n t_0^n t_1^{d-n}$, where ${\binom{n}{k}}$ are the binomial coefficients, and use $(\alpha_0 : \alpha_1 : \ldots : \alpha_n)$ as homogeneous coordinates on $\mathbb{P}_d = \mathbb{P}(S^d U)$. Then C is the image of the Veronese map $c_d : \mathbb{P}(U) \to \mathbb{P}(S^d U)$, which takes $\psi \mapsto \psi^d$.

- **b)** In the notations from (a), $C \subset \mathbb{P}(S^d U)$ is given by the condition rk $\begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_{d-1} \\ a_1 & a_2 & a_3 & \dots & a_d \end{pmatrix} = 1.$
- c) In the notations from (a), *C* is an image of any map $\mathbb{P}(U) \to \mathbb{P}(S^d U)$ given in homogeneous coordinates by a rule $t = (\alpha_0 : \alpha_1) \mapsto (f_0(\alpha) : f_1(\alpha) : \dots : f_d(\alpha))$, where f_0, f_1, \dots, f_d is any collection of linearly independent homogeneous polynomials in $\alpha = (\alpha_0, \alpha_1)$ of degree *d*.
- **d)** Pick up a collection of (d + 1) distinct points $p_0, p_1, \dots, p_d \in \mathbb{P}_1 = \mathbb{P}(\mathbb{k}^2)$, $p_v = (\alpha_v : \beta_v)$. Then *C* is the image of mapping $\varphi_{p_0, p_1, \dots, p_d} : \mathbb{P}_1 \to \mathbb{P}_d$ that takes

$$x = (x_0 : x_1) \mapsto \left(1/\det(p_0, x) : 1/\det(p_1, x) : \dots : 1/\det(p_d, x) \right),$$

where $det(p_{\nu}, x) \stackrel{\text{\tiny def}}{=} \alpha_{\nu} x_1 - \beta_{\nu} x_0$.

e) Pick up any collection of (d + 3) distinct points $p_1, p_2, ..., p_n$, $a, b, c \in \mathbb{P}_n$ such that no (n + 1) of them lie in a shared hyperplane and write $\ell_i \simeq \mathbb{P}_1$ for a pencil of hyperplanes passing through all points p_v except for p_i . Points a, b, c provide the lines ℓ_v with compatible homographies

$$\psi_{ij} : \ell_j \xrightarrow{\sim} \ell_i$$

sending 3 hyperplanes passing through *a*, *b*, *c* from the pencil ℓ_j to the similar 3 hyperplanes of ℓ_i . Then the curve *C* is drawn by the intersection point of *d* corresponding to each other hyperplanes of all the pencils: $C = \bigcup_{H \in \ell_1} H \cap \psi_{21}(H) \cap \ldots \cap \psi_{n1}(H)$.

³in projective space this means «non-intersecting», in affine space this means «not laying in a shared plane»