Введение в теневой анализ1

Соглашения. Обозначим через $D: \mathbb{Q}[x] \to \mathbb{Q}[x]$, $f \mapsto f'$, линейный оператор дифференцирования и сопоставим каждому формальному степенному ряду $\varphi(t) = \sum_{k\geqslant 0} \varphi_k t^k \in \mathbb{Q}[\![t]\!]$ линейный оператор $arphi(D)\colon \mathbb{Q}[x] o \mathbb{Q}[x], f \mapsto \sum_{k\geqslant 0} arphi_k D^k f = arphi_0 f + arphi_1 f' + arphi_2 f'' + ...,$ а также ковектор $arphi \in \mathbb{Q}[x]^*$, переводящий многочлен f(x) в число $\langle \, arphi \, , \, f \, \rangle \stackrel{\mathrm{def}}{=} \mathrm{ev}_0(arphi(D)f)$, равное значению многочлена arphi(D)f при x=0.

- ГЛ4½ 1. Как действуют на $\mathbb{Q}[x]$ линейные операторы $e^{\alpha D} = \sum_{k \geq 0} \frac{\alpha^k}{k!} D^k$, где $\alpha \in \mathbb{Q}$?
- ГЛ4½ 2. Убедитесь, что сопоставление степенным рядам ковекторов задаёт линейный изоморфизм векторных пространств $\mathbb{Q}[t] \cong \mathbb{Q}[x]^*$. Для каждого $\alpha \in \mathbb{Q}$ укажите ряд, соответствующий функционалу вычисления $\operatorname{ev}_{\alpha}\colon \mathbb{Q}[x] \to \mathbb{Q}, f \mapsto f(\alpha)$. Опишите линейные операторы $\mathbb{Q}[\![t]\!] \to \mathbb{Q}[\![t]\!]$, двойственные к следующим операторам $\mathbb{Q}[x] \to \mathbb{Q}[x]$:
 - а) умножение на $x: f(x) \mapsto x \cdot f(x)$ б) дифференцирование $D: f(x) \mapsto f'(x)$
 - в) сдвиг $T_{\alpha}:f(x)\mapsto f(x+\alpha),\,\alpha\in\mathbb{Q}$ г) $\Delta:f(x)\mapsto f(x+1)-f(x)$ и $\nabla:f(x)\mapsto f(x)-f(x-1)$.
- ГЛ4½ \diamond 3. Убедитесь, что отображение $\mathbb{Q}[[t]] \to \mathrm{End}(\mathbb{Q}[x]), \ \varphi \mapsto \varphi(D)$, является инъективным гомоморфизмом \mathbb{Q} -алгебр², и докажите, что его образ состоит из всех линейных операторов $F: \mathbb{Q}[x] \to \mathbb{Q}[x]$, которые удовлетворяют следующим эквивалентным условиям:
 - a) $\forall \alpha \in \mathbb{Q} \ FT_{\alpha} = T_{\alpha}F$ 6) $FT_{1} = T_{1}F$ B) $FT_{-1} = T_{-1}F$ r) $F\Delta = \Delta F$ g) $F\nabla = \nabla F$ e) FD = DF.
- ГЛ4½ 4. Докажите равенства $\langle \varphi \psi, x^n \rangle = \langle \varphi, \psi(D) x^n \rangle = \sum_{k=0}^n \binom{n}{k} \langle \varphi, x^{n-k} \rangle \langle \psi, x^k \rangle$.
- ГЛ4½ 5. Пусть ряд $\varphi(t) \in \mathbb{Q}[\![t]\!]$ имеет $\varphi_0 = 0$ и $\varphi_1 \neq 0$. Покажите, что существует единственный такой ряд $\overline{\varphi}(t) \in \mathbb{Q}[\![t]\!]$, что $\overline{\varphi}(\varphi(t)) = t$.
- **ГЛ4½\diamond6*.** В условиях предыдущей задачи определим многочлены $p_k(x) \in \mathbb{Q}[x]$ равенством $e^{x\overline{\phi}(t)}=\sum_{k\geqslant 0}p_k(x)\,t^k/k!$. Докажите для любых $\psi\in\mathbb{Q}[\![t]\!]$ и $q\in\mathbb{Q}[x]$ равенства
 - a) $\psi = \sum_{k\geqslant 0} \langle \psi, p_k \rangle \cdot \varphi^k / k!$ 6) $q = \sum_{k\geqslant 0} \langle \varphi^k, q \rangle \cdot p_k / k!$.
- ГЛ4½ \diamond 7 (многочлены Аппеля). Многочленами Аппеля ряда $\varphi(t) = \sum_{k \geq 0} \varphi_k t^k / k! \in \mathbb{Q}[\![t]\!]$ называются образы $f_k(x) \stackrel{\text{def}}{=} \varphi(D) \, x^k$ базисных мономов x^k под действием оператора $\varphi(D)$. Покажите, что: **a)** $\varphi_n = f_n(0)$ **б)** $f_n'(x) = n f_{n-1}(x)$ **в)** $f_n(x+y) = \sum_{k=0}^n \binom{n}{k} f_{n-k}(x) y^k$ г) $f_n(x) = \sum_{k=0}^n \binom{n}{k} \varphi_{n-k} x^k = (\varphi^{\downarrow} + x)^n$, где нисходящая стрелка у φ^{\downarrow} предписывает раскрывать бином $(\varphi + x)^n$, формально заменяя все φ^k на φ_k .
- ГЛ4½ \diamond 8 (приложение: суммы степеней). Ряд $\mathrm{td}(t) \stackrel{\mathrm{def}}{=} t/(1-e^{-t}) = \sum_{k\geqslant 0} \frac{b_k}{k!} t^k \in \mathbb{Q}[\![t]\!]$ называется рядом Тодда, его коэффициенты b_k числами Бернулли, а его многочлены Аппеля $B_k(x) \stackrel{\text{def}}{=} \operatorname{td}(D) x^k$ — многочленами Бернулли. Докажите, что следующие условия на последовательность многочленов $s_n(x) \in \mathbb{Q}[x], n \in \mathbb{N},$ эквивалентны:
- а) $s_{n+1}(m) = 0^n + 1^n + \dots + m^n$ при всех целых $m, n \geqslant 0$ б) $s_{n+1}(0) = 0$ и $\nabla s_{n+1}(x) = x^n$ в) $s_{n+1}(0) = 0$ и $Ds_{n+1}(x) = \operatorname{td}(D) x^n$ г) $(n+1) s_{n+1}(x) = B_{n+1}(x) b_{n+1} = (b^{\downarrow} + x)^{n+1} b_{n+1}$. ГЛ4½ 9. Покажите, что $(n+1)b_n = \sum_{k=1}^n (-1)^{k+1} \binom{n+1}{k+1} b_{n-k}$ при всех $n \geqslant 2$, $b_0 = 1$, $b_1 = 1/2$,
- $b_2=1/6,\,b_{2k+1}=0$ при всех $k\in\mathbb{N}.$ Вычислите все b_n с $n\leqslant 10$ и найдите $s_{11}(1000)$.
- ГЛ4½ 10. Положим $c_k(x) = x(x+1)\cdots(x+k-1)/k!$ и $c_0(x) = 1$. Докажите, что: а) $\nabla c_k = c_{k-1}$ 6) $f(x) = \sum_{k\geqslant 0} \nabla^k f(0) \cdot c_k(x) = \sum_{k\geqslant 0} \nabla^k f(\alpha) \cdot c_k(x-\alpha)$ для всех $f \in \mathbb{Q}[x]$ и $\alpha \in \mathbb{Q}$
 - в) $c_n(x+y)=\sum_{k=0}^n c_{n-k}(x)\cdot c_k(y)$, т. е. ряды $C_x(t)=\sum_{k\geqslant 0} c_k(x)\cdot t^k$ перемножаются по правилу $C_x(t)\cdot C_y(t)=C_{x+y}(t)$.

¹По-латыни: *umbral calculus*.

 $^{^{2}}$ Т. е. линейно над $\mathbb Q$ и переводит умножение рядов в композицию операторов.

 $^{^3}$ В те далёкие времена, когда не знали иных калькуляторов кроме счётов, Яков Бернулли (1654–1705) сосчитал сумму десятых степеней первой тысячи натуральных чисел меньше, чем за половину четверти часа.

Персональный табель		_ Листок № 4½ (необязательный)
•	(напишите свои имя, отчество и фамилию)	_,

No	дата	кто принял	подпись
1			
2a			
б			
В			
Г			
3			
4			
5			
6a			
б			
7a			
б			
В			
Г			
8			
9			
10a			
б			
В			