§3. Евклидова плоскость

Этот параграф посвящён метрической геометрии. Мы определим *длины* и *углы* — величины, по природе своей являющиеся *действительными числами* и характеризующиеся специфическими для поля $\mathbb R$ отношениями больше – меньше или ближе – дальше. Поэтому всюду в этом параграфе мы по умолчанию считаем, что основное поле $\mathbb k = \mathbb R$.

Определение 3.1

Скалярным произведением (или евклидовой структурой) на векторном пространстве V над полем $\mathbb R$ называется симметричная билинейная положительная функция $V \times V \to \mathbb R$, сопоставляющая каждой паре векторов $u, w \in V$ число $(v, w) \in \mathbb R$. При этом симметричность означает, что (u, w) = (w, u) для всех $u, w \in V$, билинейность — что

$$(\lambda_1 u_1 + \lambda_2 u_2, \mu_1 w_1 + \mu_2 w_2) = \lambda_1 \mu_1(u_1, w_1) + \lambda_1 \mu_2(u_1, w_2) + \lambda_2 \mu_1(u_2, w_1) + \lambda_2 \mu_2(u_2, w_2),$$

а положительность — что (v, v) > 0 для всех ненулевых векторов $v \in V$.

Пример 3.1 (СТАНДАРТНАЯ ЕВКЛИДОВА СТРУКТУРА НА \mathbb{R}^n)

Скалярное произведение векторов $u=(x_1,x_2,\ldots,x_n)$ и $w=(y_1,y_2,\ldots,y_n)$ координатного пространства \mathbb{R}^n , заданное формулой $(u,w)\stackrel{\mathrm{def}}{=} \sum x_i y_i = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$, называется *стандартным*.

Упражнение 3.1. Убедитесь, что это скалярное произведение билинейно, симметрично и положительно.

3.1. Длина вектора и перпендикулярность. Неотрицательное число $|v| \stackrel{\text{def}}{=} \sqrt{(v,v)}$ называется ∂ линой вектора v евклидова пространства V. Все ненулевые векторы имеют строго положительную длину и $|\lambda v| = |\lambda| \cdot |v|$ при всех $\lambda \in \mathbb{R}$ и $v \in V$. Скалярное произведение $V \times V \to \mathbb{R}$ однозначно восстанавливается по функции длины $V \to \mathbb{R}$ как

$$(u, w) = (|u + w|^2 - |u|^2 - |w|^2)/2.$$
(3-1)

Векторы $a, b \in V$ называются *ортогональными* или *перпендикулярными*, если (a, b) = 0. Если a и b перпендикулярны, то квадрат длины вектора c = b - a, соединяющего их концы, выражается через квадраты длин векторов a и b по *теореме Пифагора* (см. рис. $3 \diamond 1$):

$$|c|^2 = (c, c) = (b - a, b - a) = (a, a) + (b, b) = |a|^2 + |b|^2.$$
 (3-2)

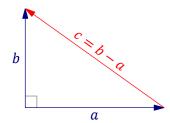


Рис. 3 1. Теорема Пифагора.

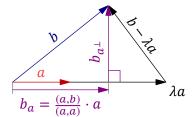


Рис. 3\diamond2. Ортогональная проекция b на a.

Предложение 3.1

Во всяком евклидовом пространстве для любого ненулевого вектора a и произвольного вектора b существует единственная пара таких векторов b_a и b_{a^\perp} , что b_a пропорционален a, b_{a^\perp} перпендикулярен a, и $b=b_a+b_{a^\perp}$ (см. рис. 3 \diamond 2). Эти векторы выражаются через a и b как

$$b_a = \frac{(a,b)}{(a,a)} a$$
 и $b_{a^{\perp}} = b - \frac{(a,b)}{(a,a)} a$, (3-3)

причём $b_{a^{\perp}}=0$ если и только если a и b пропорциональны, а $b_a=0$ если и только если b перпендикулярен a.

Доказательство. Мы ищем такие векторы $b_a=\lambda a$ и $b_{a^\perp}=b-\lambda a$, что

$$(a,b_{a^{\perp}})=(a,b-\lambda a)=(a,b)-\lambda \left(a,a\right) =0\,.$$

Так как $(a,a) \neq 0$, это равенство выполняется при единственном $\lambda = (a,b)/(a,a)$. При таком λ условие $b_a = \lambda a = 0$ равносильно равенству (a,b) = 0. Условие $b_{a^{\perp}} = b - \lambda a = 0$ означает пропорциональность векторов a и b.

Определение 3.2

Векторы b_a и $b_{a^{\perp}}$ из предл. 3.1, называются соответственно *ортогональной проекцией* вектора b на одномерное подпространство $\mathbb{R} \cdot a$, порождённое вектором a, и *нормальной составляющей* вектора b относительно a.

Упражнение 3.2. Убедитесь, что векторы b_a и $b_{a^{\perp}}$ не меняются при замене вектора a на пропорциональный вектор λa с $\lambda \neq 0$.

Следствие 3.1 (неравенство Коши – Буняковского – Шварца) Для любых двух векторов a, b евклидова пространства выполняется неравенство

$$|(a,b)| \le |a| \cdot |b|,\tag{3-4}$$

которое обращается в равенство если и только если векторы a и b пропорциональны.

Доказательство. Если a=b=0, обе части неравенства нулевые. Если $a\neq 0$, то определена нормальная составляющая b_{a^\perp} вектора b относительно a, и её скалярный квадрат

$$(b_{a^{\perp}}, b_{a^{\perp}}) = (b, b) - (a, b)^2 / (a, a) \ge 0$$
(3-5)

зануляется если и только если b пропорционален a. Домножая обе части (3-5) на (a, a), получаем $(b, b)(a, a) \ge (a, b)^2$, что равносильно (3-4).

Пример 3.2 (неравенство Коши – Буняковского для чисел)

Неравенство (3-4) применительно к векторам евклидова пространства \mathbb{R}^n из прим. 3.1 утверждает, что для любых двух наборов вещественных чисел x_1, x_2, \ldots, x_n и y_1, y_2, \ldots, y_n выполняется неравенство $(x_1y_1+x_2y_2+\cdots+x_ny_n)^2 \leqslant (x_1^2+x_2^2+\cdots+x_n^2)\cdot (y_1^2+y_2^2+\cdots+y_n^2)$, обращающееся в равенство если и только если эти наборы чисел пропорциональны.

Следствие 3.2 (неравенство треугольника)

Для любых двух векторов a,b евклидова пространства выполняется неравенство треугольника 1

$$|a+b| \le |a|+|b| \tag{3-6}$$

(см. рис. $3 \diamond 3$). Оно обращается в равенство если и только если векторы a и b сонаправлены, т. е. один получается из другого умножением на неотрицательное число.

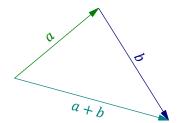


Рис. 3<3. Неравенство треугольника.

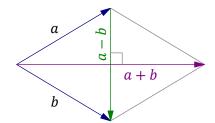


Рис. 34. Диагонали ромба.

Доказательство. Возводя обе части неравенства $|a+b| \le |a| + |b|$ в квадрат, получаем эквивалентное неравенство $(a+b,a+b) \le (a,a)+2\,|a|\cdot|b|+(b,b)$, которое после раскрытия скобок в левой части и очевидных сокращений превращается в неравенство $(a,b) \le |a|\cdot|b|$, отличающееся от неравенства (3-4) отсутствием модуля в левой части. При (a,b) < 0 оно заведомо выполняется в строгой форме. При $(a,b) \ge 0$ оно выполняется по сл. 3.1 и превращается в равенство если и только если $b=\lambda a$, где $\lambda \ge 0$, так как $(a,b) \ge 0$.

Упражнение 3.3. Проверьте, что диагонали ромба перпендикулярны, т. е. (a+b,a-b)=0 для любых двух векторов a, b одинаковой длины |a|=|b|, см. рис. $3 \diamond 4$.

3.1.1. Расстояние между точками. Аффинные пространства над евклидовыми векторными пространствами также называются *евклидовыми*. Длина $|\overrightarrow{ab}|$ вектора \overrightarrow{ab} , соединяющего точки a и b такого пространства, называется *расстоянием* между a и b и обозначается |a,b| или |b-a|. Обратите внимание, что |b-a|=|a-b|, так же как и |a,b|=|b,a|. Неравенство треугольника (3-6) на языке точек означает, что для любых трёх точек a, b, p выполняется неравенство $|p-a|+|b-p|\geqslant |b-a|$, которое обращается в равенство если и только если векторы \overrightarrow{ap} и \overrightarrow{pb} сонаправлены. Последнее равносильно тому, что точка p является барицентрической комбинацией 2 точек a и b с *неотрицательными* весами.

Упражнение 3.4. Убедитесь в этом.

В вещественном аффинном пространстве множество всех неотрицательных барицентрических комбинаций двух различных точек $a \neq b$ называется *отрезком* и обозначается

$$[a,b] \stackrel{\text{def}}{=} \{\alpha\alpha + \beta b \mid \alpha,\beta \geqslant 0 \text{ и } \alpha + \beta = 1\}.$$

Мы заключаем, что в евклидовом аффинном пространстве отрезок [a,b] представляет собою ГМТ x, удовлетворяющих равенству |a-x|+|x-b|=|a-b|.

 $^{^{1}}$ Чем, собственно, и оправдывается термин «длина».

 $^{^{2}}$ См. n° 1.5 на стр. 16.

3.1.2. Перпендикулярные прямые. Две прямые в евклидовом пространстве называются *перпендикулярными*, если перпендикулярны их векторы скоростей.

Предложение 3.2 (ортогональная проекция точки на прямую) Для любых прямой ℓ и точки $p \notin \ell$ следующие два условия на точку $q \in \ell$ эквивалентны:

- 1) |x-p| > |q-p| для всех отличных от q точек $x \in \ell$
- 2) прямая (pq) перпендикулярна прямой ℓ .

Точка $q \in \ell$ с такими свойствами существует и единственна¹.

Доказательство. Пусть прямая ℓ задаётся параметрическим уравнением o+tv, где t пробегает \mathbb{R} , $o \in \ell$ — произвольно зафиксированная точка, v — вектор скорости прямой ℓ . Точка $q \in \ell$,

удовлетворяющая условию (1) очевидно единственна, если существует. С другой стороны, по предл. 3.1, применённому к векторам a=v и $b=\overline{op}$, на прямой ℓ есть единственная такая точка $q\in\ell$, что векторы v и \overline{qp} перпендикулярны, см. рис. $3\diamond 5$. Тем самым, условие (2) выполняется для единственной точки $q\in\ell$. При этом для любой отличной от неё точки $x\in\ell$ по теореме Пифагора $|\overline{px}|^2=|\overline{pq}|^2+|\overline{qx}|^2>|\overline{pq}|^2$, откуда |x-p|>|q-p|. Тем самым, эта точка q одновременно удовлетворяет и условию (1).

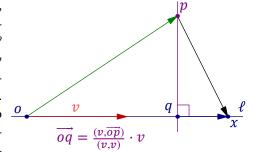


Рис 3₀5

Упражнение 3.5. Покажите, что на евклидовой плоскости через любую точку p проходит единственная прямая, перпендикулярная произвольно заданной прямой ℓ .

3.2. Ортонормальные базисы. Векторы единичной длины принято называть eдиничными. Базис двумерного евклидова векторного пространства называется opmoноpмальным, если он состоит из двух перпендикулярных единичных векторов. С любой парой непропорциональных векторов a, b можно связать ортонормальный базис из векторов

$$e_1=a/|a|$$
 и $e_2=b_{a^\perp}/|b_{a^\perp}|$,

где $b_{a^{\perp}} = b - a \cdot (a,b)/(a,a)$ — ортогональная проекция вектора b на вектор a. Таким образом, на любой евклидовой плоскости есть ортонормальный базис.

Упражнение 3.6. Покажите, что каждый единичный вектор e на евклидовой плоскости включается ровно в два ортонормальных базиса (e,f) и (e,-f), отличающиеся друг от друга ориентацией.

Предложение 3.3

Координаты вектора $u=x_1e_1+x_2e_2$ в ортонормальном базисе e_1 , e_2 равны его скалярным произведениям с базисными векторами: $x_1=(u,e_1),\,x_2=(u,e_2),\,$ а скалярное произведение векторов $u=x_1e_1+x_2e_2$ и $w=y_1e_1+y_2e_2$ вычисляется как в прим. 3.1 на стр. 33, т. е. $(u,w)=x_1y_1+x_2y_2$.

 $^{^1}$ Она называется ортогональной проекцией точки p на прямую $\ell.$

²См. опр. 3.2 на стр. 34.

Доказательство. Первое утверждение доказывается скалярным умножением обеих частей равенства $u=x_1e_1+x_2e_2$ на векторы e_1 и e_2 , второе — бесхитростным раскрытием скобок в выражении ($x_1e_1+x_2e_2$, $y_1e_1+y_2e_2$).

Пример 3.3 (уравнение прямой на евклидовой плоскости) В координатах (x_1, x_2) относительно ортонормального базиса уравнение

$$\alpha_1 x_1 + \alpha_2 x_2 = c \tag{3-7}$$

Задаёт прямую, перпендикулярную вектору $n=(\alpha_1,\alpha_2)$ и расположенную на расстоянии |c|/|n| от начала координат в направлении этого вектора при c>0 и в противоположном направлении при c<0. Действительно, соотношение (3-7) означает, что скалярное произведение переменного вектора $x=(x_1,x_2)$ с фиксированным вектором n постоянно и равно (n,x)=c, т. е. прямая (3-7) заметается концами всех векторов x, имеющих заданную ортогональную проекцию $x_n=n\cdot(x,n)/(n,n)=n\cdot c/|n|^2$

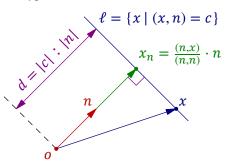


Рис. $3 \diamond 6$. Пямая (n, x) = c.

на вектор n, см. рис. $3 \diamond 6$. Длина этой проекции равна $\sqrt{(x_n,x_n)} = |c|/|n|$, а её направление определяется знаком константы c: при c>0 проекция сонаправлена с n, а при c<0 — противоположно направлена. При c=0 прямая (3-7) проходит через начало координат. К примеру, *срединный перпендикуляр* к отрезку [a,b], т. е. прямая перпендикулярная вектору a-b и проходящая через точку (a+b)/2, задаётся уравнением

$$(a-b,x) = (a-b,a+b)/2 = (|a|^2 - |b|^2)/2.$$
(3-8)

Две прямые $(n,x)=c_1$ и $(n,x)=c_2$, перпендикулярные одному и тому же вектору n удалены друг от друга на расстояние $|c_1-c_2|/|n|$. В частности, расстояние от заданной точки a до прямой (n,x)=c, равное расстоянию от этой прямой до параллельной ей и проходящей через точку a прямой (n,x)=(n,a), можно вычислять как |c-(n,a)|/|n|.

Упражнение 3.7. Покажите, что биссектрисы углов, возникающих при пересечении прямых $(n_1,x)=c_1$ и $(n_2,x)=c_2$, задаются уравнениями $|n_2|\cdot \left(c_1-(n_1,x)\right)=\pm |n_1|\cdot \left(c_2-(n_2,x)\right)$ и перпендикулярны друг другу.

Предложение 3.4 (определитель Грама)

Если векторы e_1, e_2 составляют ортонормальный базис евклидова пространства V, то для любых векторов $u, w \in V$ и любой ненулевой функции площади $s: V \times V \to \mathbb{R}$ выполняется равенство

$$\frac{s^{2}(u,w)}{s^{2}(e_{1},e_{2})} = \det \begin{pmatrix} (u,u) & (u,w) \\ (w,u) & (w,w) \end{pmatrix}$$

(определитель в правой части называется определителем Грама векторов u, w).

Доказательство. Пусть $u=x_1e_1+x_2e_2, w=y_1e_1+y_2e_2$. Тогда по сл. 1.2 на стр. 13

$$s(u, w)/s(u, w) = \det(u, w) = x_1 y_2 - x_2 y_1$$
.

 $^{^{1}}$ Ср. с доказательством лем. 1.2 на стр. 11.

С другой стороны, $(u,u)\cdot (w,w)-(u,w)^2=(x_1^2+x_2^2)(y_1^2+y_2^2)-(x_1y_1+x_2y_2)^2=(x_1y_2)^2+(x_2y_1)^2-2\,x_1y_1x_2y_2=(x_1y_2-x_2y_1)^2.$

Упражнение 3.8. Выведите из предл. 3.4 другое доказательство неравенства Коши – Буняковского – Шварца (3-4).

3.2.1. Евклидова площадь. Из предл. 3.4 вытекает, что для любых двух ортонормальных базисов (e_1', e_2') и (e_1'', e_2'') на евклидовой плоскости и любой ненулевой формы площади s отношение

$$\frac{s^2(e_1'', e_2'')}{s^2(e_1', e_2')} = \det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1,$$

откуда $s(e_1'',e_2'')=\pm s(e_1',e_2')$, т. е. все ортонормальные базисы имеют равную по абсолютной величине площадь. Функция площади s на евклидовой плоскости \mathbb{R}^2 называется eвклидовой, если $s(e_1,e_2)=1$ для стандартного ортонормального базиса $e_1=(1,0), e_2=(0,1)$. Всюду далее обозначения s(u,v) и s(abc) применительно в евклидову пространству \mathbb{R}^2 по умолчанию означают именно евклидову площадь. Ортонормальные базисы площади 1 называются положительно ориентированными, а площади -1 — отрицательно ориентированными.

Упражнение 3.9. Убедитесь, что $|\det(a,b)| = |a| \cdot |b_{a^{\perp}}|$, т. е. модуль евклидовой площади параллелограмма равен произведению длин основания и опущенной на него высоты.

3.3. Углы и тригонометрия. Пусть векторы e, e^{\perp} составляют положительно ориентированный ортонормальный базис. Коэффициенты x, y разложения $f = x \cdot e + y \cdot e^{\perp}$ произвольного единичного вектора f по этому базису удовлетворяют соотношению $x^2 + y^2 = 1$ и лежат на отрезке [-1,1]. Следовательно, существует такое число $\alpha \in \mathbb{R}$, что $x = \cos \alpha$ и $y = \sin \alpha$, причём любые два числа α' , α'' с этим свойством различаются на целое число оборотов по единичной окружности, т. е. $\alpha' - \alpha'' = 2\pi k$, где $k \in \mathbb{Z}$, см. рис. $3 \diamond 7$. Множество всех таких чисел называется ориентированным углом между единичными векторами e и f и обозначается

$$\measuredangle(e, f) \stackrel{\text{def}}{=} \{ \alpha \in \mathbb{R} \mid f = e \cdot \cos \alpha + e^{\perp} \cdot \sin \alpha \}. \tag{3-9}$$

Функции $\cos t$ и $\sin t$ принимают на всех числах из $\measuredangle(e,f)$ одни и те же значения, которые мы будем записывать как $\cos \measuredangle(e,f)$ и $\sin \measuredangle(e,f)$. Таким образом, для любого положительно ориентированного ортонормального базиса e,e^{\perp} и любого единичного вектора f выполняются соотношения 1

$$f = e \cdot \cos \measuredangle(e, f) + e^{\perp} \cdot \sin \measuredangle(e, f)$$

$$\cos \measuredangle(e, f) = (e, f) = s(f, e^{\perp})$$

$$\sin \measuredangle(e, f) = s(e, f) = (e^{\perp}, f)$$
(3-10)

Обратите внимание, что (e,f)=(f,e) и s(e,f)=-s(f,e), откуда $\cos \measuredangle(e,f)=\cos \measuredangle(f,e)$, $\sin \measuredangle(e,f)=-\sin \measuredangle(f,e)$. Тем самым, $\measuredangle(e,f)=-\measuredangle(f,e)$, т. е. углы, откладываемые против часовой стрелки считаются со знаком «+», а по часовой — со знаком «-».

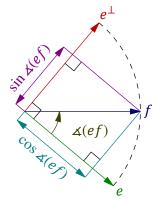


Рис. 3◊7.

Упражнение 3.10. Убедитесь, что единичный вектор $f = x \cdot e + y \cdot e^{\perp}$ дополняется до положительно ориентированного ортонормального базиса f, f^{\perp} вектором $f^{\perp} = -ye + xe^{\perp}$ и выведите отсюда соотношения $\cos \measuredangle(e, f^{\perp}) = -\sin \measuredangle(e, f)$ и $\sin \measuredangle(e, f^{\perp}) = \cos \measuredangle(e, f)$.

 $^{^{1}}$ Вторая и третья строки вычисляют коэффициенты написанного в первой строке разложения по формулам из лем. 1.2 на стр. 11 и предл. 3.3 на стр. 36.

Раскладывая по ортонормальному базису f, f^{\perp} произвольный единичный вектор

$$g = f \cdot \cos(\measuredangle(f, g)) + f^{\perp} \cdot \sin(\measuredangle(f, g))$$

и подставляя сюда разложения векторов f, f^{\perp} по базису e, e^{\perp} , получаем в матричных обозначениях из n° 2.3 на стр. 26 равенство

$$\begin{split} (e,e^\perp) \cdot \begin{pmatrix} \cos \measuredangle(e,g) \\ \sin \measuredangle(e,g) \end{pmatrix} &= g = (f,f^\perp) \cdot \begin{pmatrix} \cos \measuredangle(f,g) \\ \sin \measuredangle(f,g) \end{pmatrix} = \\ &= (e,e^\perp) \cdot \begin{pmatrix} \cos \measuredangle(e,f) & -\sin \measuredangle(e,f) \\ \sin \measuredangle(e,f) & \cos \measuredangle(e,f) \end{pmatrix} \cdot \begin{pmatrix} \cos \measuredangle(f,g) \\ \sin \measuredangle(f,g) \end{pmatrix} = \\ &= (e,e^\perp) \cdot \begin{pmatrix} \cos \measuredangle(e,f) & \cos \measuredangle(e,f) \\ \cos \measuredangle(e,f) & \cos \measuredangle(f,g) - \sin \measuredangle(e,f) & \sin \measuredangle(f,g) \\ \cos \measuredangle(e,f) & \sin \measuredangle(f,g) + \sin \measuredangle(e,f) & \cos \measuredangle(f,g) \end{pmatrix}. \end{split}$$

Тем самым, для любой тройки единичных векторов e, f, g

$$\cos \angle(e, g) = \cos \angle(e, f) \cdot \cos \angle(f, g) - \sin \angle(e, f) \cdot \sin \angle(f, g)$$

$$\sin \angle(e, g) = \cos \angle(e, f) \cdot \sin \angle(f, g) + \sin \angle(e, f) \cdot \cos \angle(f, g).$$
 (3-11)

Ориентированный угол $\measuredangle(a,b)$ между произвольными векторами a и b определяется как угол между сонаправленными с a и b единичными векторами a/|a| и b/|b|. Таким образом

$$\cos \measuredangle(a,b) = \frac{(a,b)}{|a|\cdot|b|} \quad \text{if} \quad \sin \measuredangle(a,b) = \frac{s(a,b)}{|a|\cdot|b|}. \tag{3-12}$$

В частности, мы имеем ориентированную версию школьной формулы для площади:

$$s(a,b) = |a| \cdot |b| \cdot \sin \angle (a,b). \tag{3-13}$$

Упражнение 3.11. Убедитесь, что для любых векторов $u, w \in V$ справедлива евклидова теорема косинусов: $|u+w|^2 = |u|^2 + |w|^2 + 2 \cdot |u| \cdot |w| \cdot \cos \measuredangle(u,w)$.

Пример 3.4 (окружности)

ГМТ x, удалённых от данной точки на заданное расстояние ϱ , называется okpyжhocmью радиуса ϱ с центром c и обозначается $S(\varrho,c)$. Таким образом, точка x с радиус вектором $\overrightarrow{cx}=u$ лежит на окружности $S(\varrho,c)$ если и только если $(u,u)=\varrho^2$. Каждая проходящая через центр прямая с направляющим вектором v длины $|v|=\varrho$ пересекает окружность в точках $c\pm v$, см. рис. $3\diamond 8$. Отрезок с концами в этих точках называется duamempom. Поскольку для вектора v длины ϱ и любого вектора u выполняется равенство $(u+v,u-v)=(u,u)-\varrho^2$, точка x=c+u лежит на окружности если и только если (u+v,u-v)=0. Таким образом, окружность $S(\varrho,c)$ представляет собою

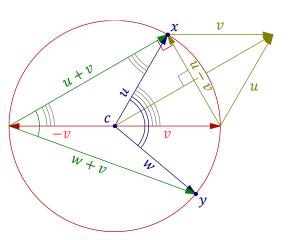


Рис. 3 8. Окружность и углы.

ГМТ x, из которых её диаметр виден под прямым углом, см. рис. $3 \diamond 8$.

Упражнение 3.12. При помощи рис. 3 8 покажите, что дуга окружности видна из любой не лежащей на этой дуге точки окружности под вдвое меньшим углом, чем из центра.

3.4. Движения. Отображение $\varphi: \mathbb{A}(V) \to \mathbb{A}(V)$ евклидовой плоскости в себя называется движением или изометрией, если оно сохраняет расстояние, т. е. |p-q|=|f(p)-f(q)| для любых двух точек $p, q \in \mathbb{A}^2$. Поскольку каждый отрезок [a, b] представляет собою ГМТ x, для которых 1 |a-x|+|x-b|=|a-b|, каждое движение биективно переводит любой отрезок [a, b] в отрезок $[\varphi(a), \varphi(b)]$ той же длины. Тем самым, все движения биективны и переводят прямые в прямые. Поэтому, согласно n° 2.2 на стр. 24, все движения являются аффинными преобразованиями. В частности, каждое движение однозначно определяется своим действием на любой треугольник.

Упражнение 3.13. Докажите школьные признаки конгруэнтности треугольников по трём сторонам, по стороне и двум прилежащим к ней углам и по двум сторонам и углу между ними². Движения образуют в аффинной группе Aff(V) подгруппу, которая называется группой движений или группой изометрий евклидова аффинного пространства $\mathbb{A}(V)$ и обозначается $\operatorname{Isom} \mathbb{A}(V)$. Группа параллельных переносов T, очевидно, содержится в $\operatorname{Isom} A(V)$.

3.4.1. Линейные ортогональные преобразования. Фиксируем какую-нибудь начальную точку $o \in \mathbb{A}(V)$ и представим движение $\varphi : \mathbb{A}(V) \to \mathbb{A}(V)$ в виде композиции $\varphi = \tau_v \circ \varphi_0$ параллельного переноса на вектор $v=\overline{o\varphi(o)}$ и линейного преобразования $\varphi_o:\overline{ox}\mapsto D_{\varphi}(\overline{ox}),$ задаваемого дифференциалом $D_{\pmb{\varphi}}: V oup V$ движения $\pmb{\varphi}$ и оставляющего точку o на месте. Поскольку линейное преобразование $\varphi_0 = \tau_{-n} \circ \varphi$ тоже является движением, оно сохраняет длины векторов, а следовательно и скалярные произведения: для всех $u, w \in V$ имеем $(\varphi(u), \varphi(w)) =$ $= (|\varphi(u+w)|^2 - |\varphi(u)|^2 - |\varphi(w)|^2)/2 = (|u+w|^2 - |u|^2 - |w|^2)/2 = (v,w)$. Сохраняющие скалярное произведение линейные преобразования евклидова векторного пространства V называются ортогональными или изометрическими. Так как ортогональное преобразование переводит ортонормальный базис в ортонормальный, оно сохраняет абсолютную величину евклидовой площади и по предл. 2.4 на стр. 28 имеет определитель ±1. Ортогональные преобразования определителя +1 сохраняют ориентацию и называются собственными или специальными. Ортогональные преобразования определителя —1 меняют ориентацию и называются несобственными.

Пример 3.5 (ОТРАЖЕНИЯ)

Каждый отличный от нуля вектор $n \in V$ задаёт несобственное ортогональное преобразование $\sigma_{\ell}:V\to V$, переводящее вектор n в $\sigma_{n}(n)=-n$ и тождественно действующее на ортогональной этому вектору прямой $\ell = n^{\perp}$, которая задаётся в ортонормальном базисе уравнени-

ем (n,x)=0. Мы будем называть преобразование σ_n ompaжением в прямой ℓ . Отражение σ_{ℓ} переводит υ каждый вектор $v \in V$ в вектор $\sigma_{\ell}(v)$, который имеет ту же нормальную составляющую относительно n, что и v, однако противоположную по знаку ортогональную проекцию на n, см. рис. $3 \diamond 9$. Тем самым,

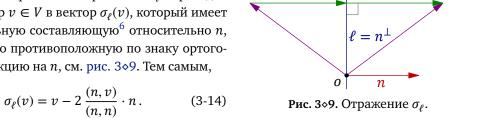


Рис. 3\diamond9. Отражение σ_{ℓ} .

¹См. n° 3.1.1 на стр. 35.

²Т. е. покажите, что в каждом из этих трёх случаев единственное аффинное преобразование, переводящее вершины одного треугольника в соответствующие вершины другого, является движением.

³См. предл. 2.5 на стр. 29.

⁴См. формулу (3-1) на стр. 33.

 $^{^5}$ В школьном курсе его обычно называют осевой симметрией.

⁶См. опр. 3.2 на стр. 34.

3.4. Движения 41

Упражнение 3.14. Проверьте прямым вычислением, что преобразование (3-14) линейно и сохраняет скалярные произведения.

Предложение 3.5

Каждое несобственное ортогональное линейное преобразование плоскости является отражением.

Доказательство. Поскольку несобственное преобразование φ не тождественно, $\varphi(v) \neq v$ для некоторого ненулевого вектора $v \in V$. Так как φ сохраняет начальную точку o и середину s отрезка $[v, \varphi(v)]$, оно действует на треугольник $\triangle osv$ так же, как отражение в срединном перпендикуляре (os) к отрезку $[v, \varphi(v)]$. Поэтому $\varphi = \sigma_{(os)}$.

Предложение 3.6

Каждое собственное ортогональное линейное преобразование плоскости является поворотом.

Доказательство. Если собственное ортогональное линейное преобразование $\varphi:V\to V$ переводит единичный вектор e_1 в вектор $f_1=\varphi(e_1)$, то оно переводит вектор e_2 , дополняющий e_1 до положительно ориентированного ортонормального базиса, в вектор f_2 , дополняющий f_1 до положительно ориентированного базиса, как на рис. $3\diamond 10$. Тем самым, φ представляет собою поворот на ориентированный угол $\vartheta=\measuredangle(e_1,f_1)$.

Упражнение 3.15. Убедитесь, что матрица 1 поворота против часовой стрелки на угол ϑ имеет в любом положительно ориентированном ортонормальном базисе вид $\begin{pmatrix} \cos \vartheta & -\sin \vartheta \\ \sin \vartheta & \cos \vartheta \end{pmatrix}$.

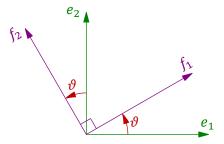


Рис. 3**⋄10**. Поворот.

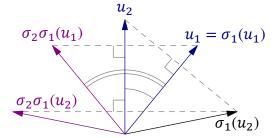


Рис. 3>11. Композиция отражений.

Упражнение 3.16. Покажите, что композиция $\sigma_2 \circ \sigma_1$ отражений в прямых с векторами скоростей u_1 и u_2 является поворотом на угол $2 \measuredangle (u_1, u_2)$ в направлении от u_1 к u_2 , см. рис. $3 \diamondsuit 11$.

3.4.2. Описание изометрий аффинной евклидовой плоскости. Из предыдущего вытекает, что любое несобственное движение евклидовой аффинной плоскости является композицией $\tau_w \circ \sigma_\ell$ отражения и сдвига, а любое собственное — композицией $\tau_u \circ \varrho_{o,\vartheta}$ сдвига с поворотом $\varrho_{o,\vartheta}$ вокруг некоторой точки o на какой-то угол ϑ .

Собственное движение $\varphi=\tau_u\circ\varrho_{o,\vartheta}$ с ненулевым углом ϑ имеет неподвижную точку — конец вектора $\overline{pq}=u$, который является диагональю ромба с вершиной o и ориентированным

¹См. n° 2.3 на стр. 26.

углом $\measuredangle(\overrightarrow{op},\overrightarrow{oq})=-\vartheta$, см. рис. $3\diamond 12$ на стр. 42. По предл. 3.5 преобразование φ является поворотом вокруг точки q. Так как поворот вокруг q на угол ϑ переводит o в $\varphi(o)$, мы заключаем, что $\varphi=\varrho_{q,\vartheta}$.

Упражнение 3.17. Найдите координаты точки q относительно положительно ориентированного ортонормального репера $(o; u_1, u_2)$, вектор u_1 которого сонаправлен с u.

Несобственное движение $\varphi = \tau_w \circ \sigma_\ell$ является композицией $\varphi = \tau_{w_\ell} \circ \sigma_{\tau_{w/2}(\ell)}$ отражения относительно сдвинутой на половину вектора w прямой $\tau_{w/2}(\ell)$ и параллельного этой прямой сдвига на вектор w_ℓ — ортогональную проекцию вектора w на прямую ℓ , см. рис. $3\diamond 13$. Действительно, композиции $\tau_w \circ \sigma_\ell$ и $\tau_{w_\ell} \circ \sigma_{\tau_{w/2}(\ell)}$ одинаково действуют на аффинный репер (o; v, n) с началом в произвольной точке $o \in \ell$ и ортонормальными базисными векторами v, n, направленными, соответственно, параллельно и перпендикулярно прямой ℓ , как на рис. $3\diamond 13$.



Рис. 3 \diamond 12. $\tau_u \circ \varrho_{o,\vartheta} = \varrho_{p,\vartheta}$.

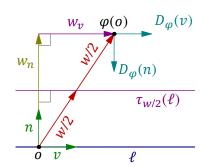


Рис. 3 \diamond 13. $\tau_{w} \circ \sigma_{\ell} = \tau_{w_{\ell}} \circ \sigma_{\tau_{w/2}(\ell)}$.

Композиция отражения со сдвигом вдоль оси этого отражения называется *скользящей сим-метрией*. Представление несобственного движения ϕ в виде скользящей симметрии

$$\lambda_{v,\ell} \stackrel{\text{def}}{=} \tau_v \circ \sigma_\ell = \sigma_\ell \circ \tau_v \,, \quad \text{где} \quad v||\ell \,,$$

замечательно тем, что отражение и сдвиг в нём коммутируют друг с другом, а само это представление единственно: прямая ℓ однозначно определяется преобразованием φ как геометрическое место середин отрезков $[p,\varphi(p)]$, после чего сдвиг $\tau_v=\varphi\circ\sigma_\ell=\sigma_\ell\circ\varphi$ тоже однозначно восстанавливается по φ и ℓ . Суммируя сказанное, мы получаем следующее классическое описание движений плоскости.

Теорема 3.і (теорема Шаля 1)

Всякое собственное движение плоскости является сдвигом или поворотом, а всякое несобственное — скользящей симметрией. \Box

Упражнение 3.18. Покажите, что композиция отражения относительно прямой ℓ_1 с последующим отражением относительно параллельной ей прямой ℓ_2 является сдвигом на удвоенное расстояние между ℓ_1 и ℓ_2 в направлении от ℓ_1 к ℓ_2 вдоль их общей нормали.

Следствие 3.3

Любое собственное движение может быть (многими способами) разложено в композицию двух отражений, а несобственное — в композицию трёх. \Box

¹Michel Floréal Chasles (15.XI.1793 – 18.XII.1880) — выдающийся французский геометр.

3.5. Комплексные числа 43

3.5. Комплексные числа. Обозначим через $\mathbb C$ двумерное евклидово пространство с фиксированным ортонормальным базисом, векторы которого будем обозначать 1 и i. В разложении произвольного вектора $z \in \mathbb C$ по этому базису вектор 1 обычно опускают и пишут z = x + iy, имея в виду вектор с координатами (x,y) в базисе 1, i. Такой вектор имеет длину $|z| = \sqrt{x^2 + y^2}$. Вещественные числа x, y и |z| называются, соответственно, dействительной частью, мнимой частью и модулем комплексного числа $z \in \mathbb C$. Ориентированный угол $\mathbf A(1,z)$ между базисным вектором 1 и вектором z называется аргументом числа z и часто обозначается через1

$$Arg(z) = \{ \alpha \in \mathbb{R} \mid z = |z| \cos \alpha + i |z| \sin \alpha \}.$$

Векторы $z\in\mathbb{C}$ называют *комплексными числами*, поскольку их можно не только складывать, но и умножать. Произведение $z_1z_2\in\mathbb{C}$ определяется как вектор, модуль которого равен произведению модулей, а аргумент — сумме аргументов сомножителей:

$$\begin{split} |z_1z_2| &\stackrel{\text{def}}{=} |z_1| \cdot |z_2| \\ \operatorname{Arg}(z_1z_2) &\stackrel{\text{def}}{=} \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) = \{\vartheta_1 + \vartheta_2 \mid \vartheta_1 \in \operatorname{Arg}(z_1), \ \vartheta_2 \in \operatorname{Arg}(z_2)\} \end{split} \tag{3-15}$$

Базисный вектор 1 является нейтральным элементом относительно умножения, что оправдывает его опускание в формулах вроде $z=x+yi=|z|\cdot(\cos\alpha+i\sin\alpha)$. Обратите внимание, что оба равенства суть верные равенства в $\mathbb C$, если понимать в них сложение и умножение как сложение и умножение комплексных чисел и считать поле вещественных чисел $\mathbb R$ вложенным в плоскость $\mathbb C$ в виде координатной прямой $\mathbb R \cdot 1 \subset \mathbb C$.

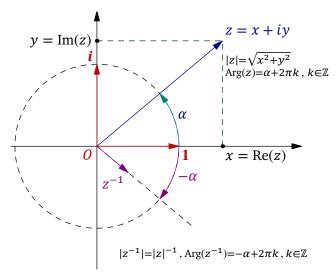


Рис. $3 \diamond 14$. Числа $z = |z| \cdot (\cos \alpha + i \sin \alpha)$ и $z^{-1} = |z|^{-1} (\cos \alpha - i \sin \alpha)$.

Обратным по умножению к ненулевому вектору $z \in \mathbb{C}$ является вектор z^{-1} с противоположным аргументом $\operatorname{Arg}(z^{-1}) = -\operatorname{Arg}(z)$ и обратным модулем $|z^{-1}| = |z|^{-1}$, см. рис. $3 \diamond 14$.

¹Напомню, что ориентированный угол — это множество всех вещественных чисел, имеющих заданные синус и косинус, как в форм. (3-9) на стр. 38. Любые два числа из этого множества различаются на целое число оборотов по единичной окружности.

 $^{^{2}}$ Обратите внимание, что правило умножения отрицательных вещественных чисел («минус на минус даёт плюс») согласуется с формулами (3-15).

Предложение 3.7

Комплексные числа образуют поле.

Доказательство. Из всех свойств поля 1 нам остаётся проверить только распределительный закон a(b+c)=ab+ac. На геометрическом языке это равенство означает, что задаваемое умножением на фиксированный вектор $a\in\mathbb{C}$ отображение $\mu_a:\mathbb{C}\to\mathbb{C},z\mapsto az$, аддитивно, т. е. $\mu_a(b+c)=\mu_a(b)+\mu_a(c)$. Отображение μ_a представляет собою поворотную гомотетию — композицию поворота на угол $\mathrm{Arg}(a)$ вокруг нуля и гомотетии с коэффициентом |a| и центром в нуле. Так как и поворот, и гомотетия линейны, линейно и μ_a .

3.5.1. Алгебраическая запись комплексных чисел. Поскольку базисный вектор i удовлетворяет соотношению $i^2=-1$ и умножение дистрибутивно по отношению к сложению, в поле $\mathbb C$ выполняется равенство

$$z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2) = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1).$$
 (3-16)

Обратное к числу z = x + iy число z^{-1} равно

$$z^{-1} = \frac{1}{x+iy} = \frac{x-iy}{(x+iy)(x-iy)} = \frac{x-iy}{x^2+y^2} = \frac{x}{|z|^2} - i\frac{y}{|z|^2}.$$
 (3-17)

Число $\overline{z}\stackrel{\text{def}}{=} x-iy$ называется комплексно сопряжённым к числу z=x+iy. В терминах комплексного сопряжения

$$z^{-1} = \overline{z}/|z|^2.$$

Геометрически, комплексное сопряжение $z\mapsto \overline{z}$ представляет собою отражение комплексной плоскости относительно вещественной оси $\mathbb{R}\cdot 1$. С алгебраической точки зрения сопряжение является инволютивным автоморфизмом поля \mathbb{C} , т. е. для всех $z,z_1,z_2\in\mathbb{C}$

$$\overline{\overline{z}} = z \;, \quad \overline{z_1 + z}_2 = \overline{z}_1 + \overline{z}_2 \;, \quad \overline{z_1 z}_2 = \overline{z}_1 \overline{z}_2 \;.$$

Упражнение 3.19. Покажите, что следующие свойства автоморфизма 2 φ поля $\mathbb C$ эквивалентны: A) $\varphi(\mathbb R) \subset \mathbb R$ Б) φ является линейным преобразованием двумерного векторного пространства $\mathbb C$ над полем $\mathbb R$ В) либо $\varphi(z) = z$ для всех $z \in \mathbb C$, либо $\varphi(z) = \overline{z}$ для всех $z \in \mathbb C$.

3.6. Преобразования подобия. Отображение $\varphi: \mathbb{A}^2(\mathbb{R}) \to \mathbb{A}^2(\mathbb{R})$ евклидовой аффинной плоскости $\mathbb{A}^2 = \mathbb{A}(\mathbb{R}^2)$ в себя называется *преобразованием подобия* или просто *подобием*, если оно изменяет все расстояния между точками в одно и тоже число раз, т. е. когда существует такая положительная вещественная константа $\gamma = \gamma(\varphi)$, зависящая только от φ и называемая *коэффициентом подобия*, что $|\varphi(p) - \varphi(q)| = \gamma |p - q|$ для всех точек $p, q \in \mathbb{A}^2$. Например, каждое движение является подобием с коэффициентом 1. Подобия образуют группу преобразований, которая называется *группой подобий*. Тот же аргумент, что и для движений 3 , показывает, что подобия переводят прямые в прямые и, стало быть, являются аффинными преобразованиями.

Упражнение 3.20. Убедитесь в этом и в том, что подобия переводят окружности в окружности. Подобия, сохраняющие ориентацию, называются *собственными*, а оборачивающие ориентацию — *несобственными*.

¹Cm. http://gorod.bogomolov-lab.ru/ps/stud/algebra-1/1314/lec-02.pdf.

²См. n° 2.1.2 на стр. 23.

³См. n° 3.4 на стр. 40.

ЛЕММА 3.1

Собственные подобия сохраняют ориентированные углы, а несобственные изменяют знак ориентированных углов.

Доказательство. Беря композицию подобия φ с параллельным переносом, мы можем и будем считать, что оно сохраняет начало координат, т. е. является линейным преобразованием подлежащего векторного пространства $V \simeq \mathbb{R}^2$. Тогда для любых двух векторов $u, w \in V$ имеем¹

$$\begin{split} \left(\varphi(u), \varphi(w)\right) &= \left|\varphi(u) + \varphi(w)\right|^2 - \left|\varphi(u)\right|^2 - \left|\varphi(w)\right|^2 = \\ &= \left|\varphi(u+w)\right|^2 - \left|\varphi(u)\right|^2 - \left|\varphi(w)\right|^2 = \gamma^2 \left(|u+w|^2 - |u|^2 - |w|^2\right) = \gamma^2 (u, w), \end{split}$$

откуда

$$\cos \measuredangle \left(\varphi(u), \varphi(w)\right) = \frac{(\varphi(u), \varphi(w))}{|\varphi(u)| \cdot |\varphi(w)|} = \frac{(u, w)}{|u| \cdot |w|} = \cos \measuredangle (u, w),$$

T. e.
$$\measuredangle(\varphi(u), \varphi(w)) = \pm \measuredangle(u, w)$$
.

3.6.1. Подобия как аффинные преобразования комплексной прямой. Фиксируем в двумерном евклидовом пространстве V любой ортонормальный базис, векторы которого обозначим через 1 и i, и отождествим это пространство с полем комплексных чисел \mathbb{C} , как в \mathbb{n}° 3.5 выше. Это позволяет рассматривать вещественную аффинную плоскость $\mathbb{A}^{2}(\mathbb{R}) = \mathbb{A}(V)$ как комплексную аффинную прямую $\mathbb{A}^{1}(\mathbb{C})$. Мы собираемся показать, что группа собственных подобий вещественной плоскости $\mathbb{A}^{2}(\mathbb{R})$ совпадает с аффинной группой комплексной прямой $\mathbb{A}^{1}(\mathbb{C})$.

Предложение 3.8

Каждое собственное подобие $\varphi: \mathbb{A}^1(\mathbb{C}) \to \mathbb{A}^1(\mathbb{C})$ является комплексным аффинным преобразованием вида $z \mapsto az + b$, а каждое несобственное — полуаффинным преобразованием вида $z \mapsto a\overline{z} + b$, где числа $a,b \in \mathbb{C}$ однозначно определяются подобием φ . Наоборот, для любых $a,b \in \mathbb{C}$ преобразования вида $z \mapsto az + b$ и $z \mapsto a\overline{z} + b$ являются, соответственно, собственным и несобственным подобиями.

Доказательство. Беря композицию собственного подобия φ со сдвигом, мы можем и будем считать, что φ оставляет на месте нуль $0 \in \mathbb{C}$. Так как φ сохраняет ориентированные углы и умножает длины векторов на фиксированное положительное число $\gamma \in \mathbb{R}$, преобразование φ является поворотной гомотетией, т. е. умножением на комплексное число $a = \varphi(1)$, что доказывает первое утверждение. Для несобственного подобия φ преобразование $z \mapsto \varphi(\overline{z})$, являющееся композицией φ с отражением в действительной оси, является собственным подобием и по уже доказанному имеет вид $z \mapsto az + b$. Поэтому $\varphi(z) = a\overline{z} + b$.

Упражнение 3.21. Убедитесь в справедливости последнего утверждения из предл. 3.8.

Следствие 3.4

Для любых двух пар различных точек $a \neq b$ и $c \neq d$ имеется единственное собственное подобие переводящее a в c и b в d.

 $^{^{1}}$ Ср. с аналогичной выкладкой из n° 3.4.1 на стр. 40.

Доказательство. Неизвестные коэффициенты $x_1, x_2 \in \mathbb{C}$ искомого аффинного преобразования $z \mapsto x_1 z + x_2$ удовлетворяют системе линейных уравнений

$$\begin{cases} x_1a + x_2 = c \\ x_1b + x_2 = d, \end{cases}$$

имеющей в поле $\mathbb C$ единственное решение $x_1=(c-d)/(a-b)$, $x_2=(ad-bc)/(a-b)$.

Следствие 3.5

Всякое собственное подобие является либо сдвигом, либо поворотной гомотетией.

Доказательство. Аффинное преобразование $z\mapsto az+b$ с нетождественным дифференциалом $a\neq 1$ имеет неподвижную точку c=b/(1-a) и, стало быть, является поворотной гомотетией относительно этой точки.

¹См. лем. 1.2 на стр. 11.

Ответы и указания к некоторым упражнениям

Упр. 3.2.
$$\frac{(\lambda a,b)}{(\lambda a,\lambda a)}\cdot \lambda a = \frac{(a,b)}{(a,a)}\cdot a$$
.

- Упр. 3.5. Если $p \notin \ell$, утверждение вытекает из предл. 3.2. Если $p \in \ell$, выберите p за начало отсчёта, обозначьте через e_1 вектор скорости прямой ℓ , возьмите любой вектор b, не пропорциональный ℓ и положите $e_2 = b_{e_1^\perp}$. Тогда $e_2 \neq 0$ и перпендикулярен e_1 . Поэтому прямая $p + te_2$ перпендикулярна ℓ . Произвольный вектор $w = xe_1 + ye_2$ перпендикулярен e_1 если и только если x = 0. Поэтому такая прямая единственна.
- Упр. 3.6. Рассмотрим любой ортонормальный базис e, e^{\perp} . Если $f = xe + ye^{\perp}$ образует вместе с e ортонормальный базис, то (e, f) = 0 влечёт x = 0, после чего (f, f) = 1 влечёт $y^2 = 1$, т. е. $f = \pm e^{\perp}$.
- Упр. 3.7. Воспользуйтесь тем, что объединение биссектрис это ГМТ, равноудалённых от двух данных прямых.
- Упр. 3.8. Неравенство Коши Буняковского Шварца равносильно неравенству

$$(u,v)^2 - (u,u) \cdot (u,v) \geqslant 0,$$

в левой части которого стоит определитель Грама, по предл. 3.4 равный квадрату отношения площадей $s(u,w)/s(e_1,e_2)$, положительному, когда u и w не пропорциональны, и нулевому — когда пропорциональны.

Упр. 3.9.
$$\det^2(a,b) = \det^2(a,b_a+b_{a^\perp}) = \det^2(a,b_{a^\perp}) = (a,a) \cdot (b_{a^\perp},b_{a^\perp}).$$

Упр. 3.10. Вычислите $\det(f,f^{\perp})$ (f^{\perp},f^{\perp}) и $s(f,f^{\perp})$.

- Упр. 3.12. Так как (v, v) = (u, u), имеем равенство углов $\angle(v, u + v) = \angle(u + v, u)$. Тем самым, оба этих угла составляют половину от $\angle(v, u)$, см. рис. 3 \diamond 8 на стр. 39. Аналогично, $2\angle(v, w + v) = \angle(v, w)$, откуда $2\angle(u + v, w + v) = \angle(v, w)$.
- Упр. 3.16. Оба линейных преобразования композиция отражений и поворот одинаково действуют на базис u_1, u_2 .
- Упр. 3.17. Ответ: $\frac{|u|}{2} \cdot (1, \operatorname{ctg}(\vartheta/2))$.
- Упр. 3.18. Выясните, куда переходит аффинный репер (o; v, n) с началом в произвольной точке $o \in \ell$ и ортонормальными базисными векторами v, n, направленными, соответственно, параллельно и перпендикулярно прямым ℓ_i .
- Упр. 3.19. Импликации (в) \Rightarrow (б) \Rightarrow (а) очевидны. В n° 2.1.2 на стр. 23 мы видели, что если отображение φ : $\mathbb{R} \to \mathbb{R}$ перестановочно со сложением и умножением, то оно тождественно. Поэтому (а) \iff (б). Так как соотношение $\varphi(i)^2 = \varphi(i^2) = \varphi(-1) = -1$ влечёт $\varphi(i) = \pm i$, из линейности φ над \mathbb{R} вытекает, что $\varphi(x + yi) = x\varphi(1) + y\varphi(i) = x \pm iy$, т. е. (б) \Rightarrow (в).