§6. Евклидова геометрия

Всюду в этом параграфе основное поле $\mathbb{k} = \mathbb{R}$.

6.1. Евклидовы пространства. Напомню 1 , что векторное V над полем вещественных чисел $\mathbb R$ называется esknudoshm, если на нём задано симметричное билинейное скалярное произведение, сопоставляющее паре векторов $u,w\in V$ число $(u,w)=(w,u)\in \mathbb R$ так, что скалярные квадраты всех ненулевых векторов положительны. Ограничение скалярного произведения на любое подпространство в V задаёт евклидову структуру на этом подпространстве. В частности, линейная оболочка любой пары непропорциональных векторов в любом евклидовом пространстве представляет собою обычную «школьную» евклидову плоскость, подробно обсуждавшуюся нами в §3. В частности, для любых двух векторов каждого евклидова пространства выполняется неравенство Коши – Буняковского – Шварца 2

$$(v,v)\cdot(w,w)\geqslant(v,w)^2,\tag{6-1}$$

равенство в котором равносильно пропорциональности векторов u и w, и вытекающее из него 3 неравенство треугольника

$$\forall u, w \quad \sqrt{(u, u)} + \sqrt{(w, w)} \geqslant \sqrt{(u + w, u + w)}, \tag{6-2}$$

равенство в котором равносильно сонаправленности 4 векторов u и w. Это позволяет определить в каждом евклидовом пространстве длину вектора и угол между двумя векторами:

$$|v| \stackrel{\text{def}}{=} \sqrt{(v, v)} \tag{6-3}$$

$$\cos \measuredangle(v, w) \stackrel{\text{def}}{=} \frac{(v, w)}{|v| \cdot |w|}. \tag{6-4}$$

Поскольку $|v\pm w|^2=(v\pm w,v\pm w)=(v,v)\pm 2(v,w)+(w,w)$, скалярное произведение $V\times V\to \mathbb{R}$ однозначно восстанавливается по функции длины $V\to \mathbb{R}$ посредством формул

$$(v, w) = (|v + w|^2 - |v - w|^2)/4 = (|v + w|^2 - |v|^2 - |w|^2)/2.$$
(6-5)

Пример 6.1 (СТАНДАРТНАЯ ЕВКЛИДОВА СТРУКТУРА НА \mathbb{R}^n)

Напомню⁵, что в стандартной евклидовой структуре на координатном пространстве \mathbb{R}^n скалярное произведение векторов $u=(x_1,x_2,\ldots,x_n)$ и $w=(y_1,y_2,\ldots,y_n)$ задаётся формулой

$$(u, w) \stackrel{\text{def}}{=} x_1 y_1 + x_2 y_2 + \dots + x_n y_n. \tag{6-6}$$

Неравенство (6-1) для такого скалярного произведения имеет вид

$$(x_1^2 + x_2^2 + \cdots + x_n^2)(y_1^2 + y_1^2 + \cdots + y_n^2) \geqslant (x_1y_1 + x_1y_1 + \cdots + x_ny_n)^2$$

и называется неравенством Коши – Буняковского. Оно справедливо для любых двух наборов вещественных чисел x_1, x_2, \dots, x_n и y_1, y_2, \dots, y_n и обращается в равенство тогда и только тогда,

¹См. опр. 3.1 на стр. 33.

²См. сл. 3.2 на стр. 35.

³См. сл. 3.3 на стр. 35.

⁴Т. е. пропорциональности с *положительным* коэффициентом.

⁵См. прим. 3.1 на стр. 33.

когда эти наборы пропорциональны. Длина вектора в \mathbb{R}^n вычисляется по n-мерной теореме Пифагора:

$$|(x_1, x_2, \dots, x_n)| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Пример 6.2 (пространство непрерывных функций)

Зададим скалярное произведение непрерывных функций на отрезке [a,b] формулой

$$(f,g) = \int_{a}^{b} f(x)g(x) dx.$$
 (6-7)

Упражнение 6.1. Выведите из известных вам свойств интегралов от непрерывных функций, что это произведение билинейно и положительно.

Формула (6-7) является прямым обобщением формулы (6-6), если воспринимать функции как «континуальные наборы координат», номера которых суть точки отрезка. В пространстве непрерывных функций неравенство (6-1) имеет вид

$$\int_{a}^{b} f^{2}(x) dx \cdot \int_{a}^{b} g^{2}(x) dx \geqslant \left(\int_{a}^{b} f(x) g(x) dx \right)^{2}$$

и называется *неравенством Шварца*. Оно выполняется для любых двух непрерывных функций f и g и обращается в равенство тогда и только тогда, когда эти функции отличаются скалярным множителем. Длина функции вычисляется по «континуальной» теореме Пифагора

$$|f|^2 = \int_a^b f^2(x) \, dx.$$

6.1.1. Уравнение гиперплоскости.

Для заданных ненулевого вектора a в евклидовом пространстве V и произвольного числа $d \in \mathbb{R}$ линейное неоднородное уравнение на вектор $x \in V$

$$(a, x) = d \tag{6-8}$$

задаёт в аффинном пространстве $\mathbb{A}(V)$ гиперплоскость, перпендикулярную вектору a и удалённую от нуля на расстояние |d|/|a| в ту же сторону, что и конец вектора a, если d>0, и в противоположную сторону, если d<0 (см. рис. $6 \diamond 1$). Действительно, вектор x удовлетворяет (6-8), если и только если его ортогональная проекция на вектор a равна

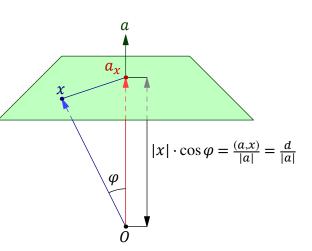


Рис. 6 \diamond 1. ГМТ x: (a, x) = d.

$$a_x = a \cdot \frac{(a, x)}{(a, a)} = a \cdot \frac{d}{|a|^2} = \frac{a}{|a|} \cdot \frac{d}{|a|}.$$

¹См. формулу (3-3) на стр. 34.

Это фиксированный вектор длины $|a_x| = |d|/|a|$, сонаправленный с a при d>0 и противоположно направленный к a при d<0. В координатном пространстве \mathbb{R}^n уравнение (6-8) выглядит как $a_1x_1+a_2x_2+\cdots+a_nx_n=d$, где $a=(a_1,a_2,\ldots,a_n)\in\mathbb{R}^n, d\in\mathbb{R}$.

Пример 6.3 (срединный перпендикуляр)

Рассмотрим в евклидовом аффинном пространстве \mathbb{A}^n произвольную пару различных точек $p_0 \neq p_1$. Покажем, что ГМТ $x \in \mathbb{A}^n$, равноудалённых от p_0 и p_1 , представляет собою гиперплоскость, перпендикулярную вектору $\overline{p_0} \overrightarrow{p}_1$ и проходящую через точку $(p_0 + p_1)/2$ — середину отрезка $[p_0, p_1]$. Эта гиперплоскость называется *срединным перпендикуляром* к отрезку $[p_0, p_1]$. Равенство длин $|x, p_0| = |x, p_1|$ равносильно равенству скалярных произведений

$$(\overrightarrow{xp}_0, \overrightarrow{xp}_0) = (\overrightarrow{xp}_1, \overrightarrow{xp}_1),$$

т. е. равенству $(p_0-x,p_0-x)=(p_1-x,p_1-x)$, где буквы p_0,p_1,x обозначают радиус-векторы соответствующих точек, выпущенные из произвольно выбранной начальной точки $0\in\mathbb{A}^n$. После раскрытия скобок и сокращений, получаем $(p_0,p_0)-2(p_0,x)=(p_1,p_1)-2(p_1,x)$ или

$$2(p_1 - p_0, x) = (p_1, p_1) - (p_0, p_0). (6-9)$$

Это уравнение задаёт гиперплоскость, перпендикулярную вектору $\overline{p_0p_1} = p_1 - p_0$ и проходящую через точку $(p_0 + p_1)/2$, ибо последняя, очевидно, равноудалена от p_0 и p_1 .

Упражнение 6.2. Убедитесь прямым вычислением, что $x = (p_0 + p_1)/2$ удовлетворяет уравнению (6-9).

6.1.2. Ортогонализация. Набор векторов евклидова пространства называют *ортогональным*, если любые два вектора в нём ортогональны друг другу. Любой ортогональный набор ненулевых векторов v_1, v_2, \ldots, v_k линейно независим, поскольку скалярно умножая равенство

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k = 0$$

на v_i , получаем $\lambda_i(v_i,v_i)=0$, откуда все $\lambda_i=0$. Ортогональный набор векторов называют *ортонормальным*, если все векторы в нём имеют длину 1. По предыдущему, всякий ортонормальный набор векторов e_1,e_2,\ldots,e_k является базисом своей линейной оболочки, и коэффициенты разложения векторов по этому базису равны скалярным произведениям с соответствующими базисными векторами: если $v=\sum x_i e_i$, то $(e_i,v)=x_i$ в силу ортонормальности векторов e_i . Скалярное произведение векторов $u=\sum x_i e_i$ и $w=\sum y_i e_i$, разложенных по ортонормальному базису e_1,e_2,\ldots,e_k , равно $(u,w)=x_1y_1+x_2y_2+\cdots+x_ky_k$.

Предложение 6.1

В линейной оболочке любых векторов u_1, u_2, \ldots, u_m , не все из которых нулевые, существует такой ортонормальный базис e_1, e_2, \ldots, e_k , что каждый вектор u_i лежит в линейной оболочке первых i базисных векторов e_1, e_2, \ldots, e_i .

Доказательство. В качестве первого вектора в искомом базисе возьмём $e_1=u_S/|u_S|$, где u_S — первый слева ненулевой вектор в наборе u_1,u_2,\ldots,u_m . Тогда $|e_1|=1$ и e_1 порождает то же одномерное пространство, что и векторы u_1,u_2,\ldots,u_s . Допустим по индукции, что уже построены ортонормальные векторы e_1,e_2,\ldots,e_i , линейная оболочка которых совпадает с линейной

оболочкой векторов u_1, u_2, \dots, u_k , где $k \geqslant i$. Положим

$$w_{i+1} = u_{k+1} - \sum_{\nu=1}^{i} (u_{k+1}, e_{\nu}) \cdot e_{\nu}$$
 (6-10)

(см. рис. 6 \diamond 2). Вектор w_{i+1} ортогонален всем векторам e_1, e_2, \ldots, e_i , поскольку скалярно умножая обе части равенства (6-10) на любой вектор e_{ν} с $1 \leqslant \nu \leqslant i$, получаем

$$(w_{i+1}, e_{\nu}) = (u_{k+1}, e_{\nu}) - (u_{k+1}, e_{\nu})(e_{\nu}, e_{\nu}) = 0.$$

Если $w_{i+1}=0$, то вектор u_{k+1} лежит в линейной оболочке векторов e_1,e_2,\ldots,e_i и можно переходить к следующему шагу с тем же i и k+1 вместо k. Если $w_{i+1}\neq 0$, то полагаем $e_{i+1}==w_{i+1}/|w_{i+1}|$ и получаем ортонормальный набор векторов e_1,e_2,\ldots,e_{i+1} , линейная оболочка которого совпадает с линейной оболочкой векторов u_1,u_2,\ldots,u_{k+1} .

Замечание 6.1. Описанный выше процесс построения ортонормального базиса в линейной оболочке заданных векторов называется *ортогонализацией* Грама – Шмидта.

Следствие 6.1

В любом евклидовом пространстве существует ортонормальный базис.

6.2. Матрицы Грама. С любыми двумя наборами векторов евклидова пространства

$$u = (u_1, u_2, \dots, u_m)$$

 $w = (w_1, w_2, \dots, w_k)$ (6-11)

можно связать таблицу их попарных скалярных произведений, поместив скалярное произведение (u_i, w_j) в пересечение i-той строки и j-того столбца. Полученная матрица обозначается

$$G_{uw} \stackrel{\text{def}}{=} ((u_i, w_j)) \in \text{Mat}_{m \times k}(\mathbb{R})$$

и называется матрицей Грама наборов u и w. Если воспринимать эти наборы как матрицы, элементами которых являются векторы, и под произведением двух векторов понимать их скалярное

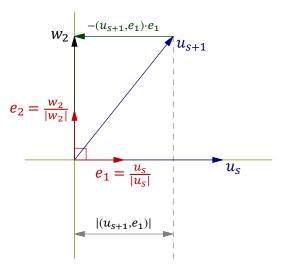


Рис. 6 > 2. Второй шаг ортогонализации.

произведение, т. е. положить $ab \stackrel{\text{def}}{=} (a,b) \in \mathbb{R}$ для любых $a,b \in V$, то матрицу Грама можно описать при помощи умножения матриц равенством

$$G_{uw}=u^tw$$
,

где $w=(w_1,w_2,\ldots,w_k)$ это строка из векторов, а u^t — столбец из векторов, транспонированный к строке $u=(u_1,u_2,\ldots,u_m)$. Если наборы векторов u и w линейно выражаются через какие-то другие наборы векторов $e=(e_1,e_2,\ldots,e_r)$ и $f=(f_1,f_2,\ldots,f_s)$ по формулам $u=e\cdot C_{eu}$ и $w=f\cdot C_{fw}$, где $C_{eu}\in \operatorname{Mat}_{r\times m}(\mathbb{R})$ и $C_{fw}\in \operatorname{Mat}_{s\times k}(\mathbb{R})$ некие матрицы, то матрица Грама G_{uw} пересчитывается через матрицу Грама G_{ef} по формуле

$$G_{uw} = u^{t}w = (eC_{eu})^{t} f C_{fw} = C_{eu}^{t} e^{t} f C_{fw} = C_{eu}^{t} G_{ef} C_{fw}.$$
 (6-12)

При w=u мы получаем таблицу умножения векторов из одного набора u_1,u_2,\ldots,u_m . В этом случае обозначение G_{uu} сокращается до $G_u\stackrel{\mathrm{def}}{=} \left((u_i,u_j)\right)\in \mathrm{Mat}_{m\times m}(\mathbb{R})$. Определитель этой квадратной матрицы называется *определителем* Грама векторов u_1,u_2,\ldots,u_m и обозначается $\Gamma_u\stackrel{\mathrm{def}}{=} \det G_u$. Ортонормальность векторов e_1,e_2,\ldots,e_k означает, что их матрица Грама $G_e=E$, и в этом случае $\Gamma_e=\det E=1$.

Предложение 6.2

Если векторы u_1, u_2, \ldots, u_m образуют базис в подпространстве U, а векторы e_1, e_2, \ldots, e_m составляют в том же подпространстве U ортонормальный базис, то $\Gamma_u = \det^2 C_{eu}$, где C_{eu} — матрица, по столбцам которой стоят координаты векторов u в базисе e, т. е.

$$(u_1, u_2, \dots, u_m) = (e_1, e_2, \dots, e_m) \cdot C_{eu}$$
.

Доказательство. По формуле (6-12) имеем $G_u = C_{eu}^t G_e C_{eu} = C_{eu}^t E C_{eu} = C_{eu}^t C_{eu}$. Следовательно, $\Gamma_u = \det G_u = \det C_{eu}^t \cdot \det C_{eu} = \det^2 C_{eu}$.

Следствие 6.2

Определитель Грама любого набора векторов неотрицателен, и его обращение в нуль равносильно линейной зависимости этих векторов.

Доказательство. Если векторы v_1, v_2, \ldots, v_m линейно независимы, то они составляют базис в своей линейной оболочке, и $\Gamma_v = \det^2 C_{ev} > 0$. Если же $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_m v_m = 0$ для некоторого ненулевого набора констант λ_i , то умножая это равенство скалярно на v_v , получаем при каждом v равенство $\lambda_1(v_v, v_1) + \lambda_2(v_v, v_2) + \cdots + \lambda_m(v_v, v_m) = 0$, означающее, что столбцы матрицы Грама $G_v = \left((v_i, v_j) \right)$ линейно зависимы с коэффициентами $\lambda_1, \lambda_2, \ldots, \lambda_m$. Поэтому $\Gamma_v = \det G_v = 0$.

Следствие 6.3

Все ортонормальные базисы n-мерного евклидова пространства имеют одинаковый по абсолютной величине объём 1 . Если зафиксировать форму объёма так, чтобы абсолютная величина объёма ортогонального базиса равнялась единице, квадрат объёма параллелепипеда, натянутого на произвольные векторы v_1, v_2, \ldots, v_n будет равен определителю Грама Γ_v этих векторов.

Доказательство. Зафиксируем какой-нибудь ортонормальный базис $e=(e_1,e_2,\ldots,e_n)$ и рассмотрим форму объёма, равную нём единице. Тогда квадрат объёма параллелепипеда, натянутого на произвольные n векторов $(v_1,v_2,\ldots,v_n)=(e_1,e_2,\ldots,e_n)C_{ev}$, равен $\det^2 C_{ev}=\Gamma_v$. В частности, квадрат объёма параллелепипеда, натянутого на любой ортонормальный базис f равен $\Gamma_f=\det E=1$.

6.2.1. Евклидов объём и ориентация. Ортонормальные базисы равного объёма называются коориентированными. Ортонормальные базисы противоположного по знаку объёма называются противоположно ориентированными. Любая нечётная перестановка базисных векторов меняет ориентацию базиса, а любая чётная — не меняет. В каждом евклидовом пространстве V имеются ровно две (различающиеся знаком) формы объёма, такие что объёмы всех ортонормальных базисов равны ± 1 . Выбор одной из них в качестве формы объёма называется выбором

 $^{^{1}}$ Относительно любой ненулевой формы объёма.

ориентации на V. Ориентация координатного пространства \mathbb{R}^n , принимающая значение +1 на стандартном базисе (e_1, e_2, \dots, e_n) , называется cmandapmnoŭ.

Абсолютная величина объёма параллелепипеда, натянутого на произвольно заданные векторы (v_1, v_2, \ldots, v_n) , вычисленная относительно одной из двух ориентирующих форм, не зависит от выбора ориентации и называется евклидовым объёмом (неориентированного) параллелепипеда. Мы будем обозначать евклидов объём через

$$\operatorname{Vol}(v_1, v_2, \dots, v_n) = \sqrt{\Gamma_v} = \sqrt{\det\left(v_i, v_j\right)}. \tag{6-13}$$

6.3. Евклидова двойственность. С каждым вектором v евклидова пространства V связан линейный функционал скалярного умножения на v

$$g_v: V \to \mathbb{R}, \quad u \mapsto (u, v).$$

Сопоставление векторам $v \in V$ линейных функционалов g_v задаёт линейное отображение

$$g: V \to V^*, \quad v \mapsto g_v.$$
 (6-14)

Упражнение 6.3. Убедитесь в линейности функционала g_v и отображения g.

Поскольку $g_v(v)=(v,v)\neq 0$ для любого $v\neq 0$, ковектор g_v0 ненулевой при ненулевом $v\neq 0$. Тем самым, отображение (6-14) инъективно, а значит, является изоморфизмом векторных пространств. Иначе говоря, любой линейный функционал на евклидовом пространстве однозначно представляется в виде скалярного произведения с некоторым вектором.

Упражнение 6.4. Убедитесь, что матрица отображения g в произвольном базисе e пространства V и двойственном ему базисе e^* пространства V^* совпадает с матрицей Грама G_e .

6.3.1. Двойственный базис. Для любого базиса $u=(u_1,u_2,\ldots,u_n)$ пространства V, прообразы координатных функционалов $u_1^*,u_2^*,\ldots,u_n^*\in V^*$, образующих двойственный к u базис пространства V^* , обозначаются $u^\times=(u_1^\times,u_2^\times,\ldots,u_n^\times)\in V$ и называются eвклидово двойственным к u базисом пространства V. Векторы евклидово двойственного базиса однозначно характеризуются соотношениями

$$(u_i, u_j^{\times}) = \begin{cases} 0, \text{ при } i \neq j, \\ 1, \text{ при } i = j, \end{cases}$$
 (6-15)

означающими что взаимная матрица Грама $G_{uu^\times}=u^tu^\times=E$. Согласно форм. (6-12) на стр. 93 матрица C_{uu^\times} , линейно выражающая базис u^\times через базис u по формуле $u^\times=uC_{uu^\times}$, удовлетворяет равенству $E=G_{uu^\times}=G_uC_{uu^\times}$, т. е. обратна к матрице Грама базиса u. Тем самым,

$$(u_1^{\times}, u_2^{\times}, \dots, u_n^{\times}) = (u_1, u_2, \dots, u_n) \cdot G_u^{-1}.$$
 (6-16)

Ортонормальность базиса означает, что он совпадает со своим евклидово двойственным.

Упражнение 6.5. Покажите, что $u_i^{\times\times} = u_i$.

По определению двойственного базиса, коэффициенты разложения произвольного вектора v по любому базису u_1,u_2,\ldots,u_n равны скалярным произведениям с соответствующими векторами двойственного базиса

$$v = \sum_{i} e_i \cdot (v, e_i^{\times}). \tag{6-17}$$

Убедиться в этом напрямую можно скалярно умножив обе части на u_i^{\times} для каждого i.

6.3.2. Ортогоналы. Прообраз аннулятора ${\rm Ann}(U)\subset V^*$ данного подпространства $U\subset V$ при изоморфизме (6-14) обозначается через

$$U^{\perp} = \{ w \in V \mid \forall u \in U (u, w) = 0 \}$$

и называется ортогоналом или ортогональным дополнением к И. По предл. 4.7 на стр. 64

$$\dim U^{\perp} = \dim \operatorname{Ann} U = \dim V - \dim U$$

Упражнение 6.6. Убедитесь, что $U^{\perp} \cap U = 0$.

Таким образом, $V=U\oplus U^{\perp}$, т. е. каждый вектор $v\in V$ допускает единственное разложение

$$v = v_U + v_{U^{\perp}},$$
 где $v_U \in U, v_{U^{\perp}} \in U^{\perp}.$ (6-18)

Компоненты $v_U \in U$ и $v_{U^\perp} \in U^\perp$ этого разложения называются *ортогональной проекцией* вектора v на подпространство U и *нормальной составляющей* вектора $v \in V$ относительно U соответственно.

Из сл. 4.6 на стр. 64 и теор. 4.1 на стр. 65 вытекает, что соответствие $U \leftrightarrow U^{\perp}$ задаёт оборачивающую включения биекцию между подпространствами дополнительных размерностей в V, и эта биекция переводит суммы подпространств в пересечения, а пересечения — в суммы, т. е. для любых подпространств $U, W \subset V$ выполняются равенства

$$U^{\perp \perp} = U, \quad (U + W)^{\perp} = U^{\perp} \cap W^{\perp}, \quad (U \cap W)^{\perp} = U^{\perp} + W^{\perp}.$$
 (6-19)

Упражнение 6.7. Докажите все эти утверждения независимо от сл. 4.6 и теор. 4.1.

6.4. Ортогональное проектирование. Для любого ненулевого подпространства $U \subsetneq V$ линейное отображение

$$\pi_{II}: V = U \oplus U^{\perp} \twoheadrightarrow U, \quad v = v_{II} + v_{II^{\perp}} \mapsto v_{II},$$

называется ортогональным проектированием V на U.

Предложение 6.3

Ортогональная проекция $v_U \in U$ произвольного вектора $v \in V$ на подпространство $U \subset V$ однозначно характеризуется любым из следующих эквивалентных друг другу свойств:

- 1) $v v_{II} \in U^{\perp}$
- 2) $\forall u \in U \ (u, v) = (u, v_U)$
- 3) $\forall u \in U \ u \neq v_U \Rightarrow |v u| > |v v_U|$

и может найдена по формуле

$$v_U = \sum_{i=1}^{m} u_i \cdot (v, u_i^{\times}), \tag{6-20}$$

где u_1, u_2, \dots, u_m и $u_1^{\times}, u_2^{\times}, \dots, u_m^{\times}$ — произвольные евклидово двойственные базисы в U.

Доказательство. Свойства (1) и (2) очевидным образом равносильны и утверждают, что векторы v_U и $v-v_U$ являются компонентами вектора v в прямом разложении $V=U\oplus U^\perp$. Свойство (3) выполняется для ортогональной проекции v_U вектора v на U, поскольку для любого вектора $u=v_U+w\in U$ с ненулевым $w\in U$

$$(v-u,v-u) = (v_{U^{\perp}}-w,v_{U^{\perp}}-w) = (v_{U^{\perp}},v_{U^{\perp}}) + (w,w) > (v_{U^{\perp}},v_{U^{\perp}}).$$

А так как вектор, обладающий свойством (3), очевидно, единствен, свойство (3) равносильно свойствам (1) и (2). Остаётся проверить, что вектор v_U , заданный по формуле (6-20), обладает свойством (2). Поскольку свойство (2) линейно по $u \in U$, достаточно проверить его для всех векторов какого-нибудь базиса в U. Для базисных векторов $u_{\mathcal{V}}^{\times}$ получаем требуемое равенство $(v_U, u_{\mathcal{V}}^{\times}) = \sum_i (u_i, u_{\mathcal{V}}^{\times}) \cdot (v, u_i^{\times}) = (v, u_{\mathcal{V}}^{\times})$.

Следствие 6.4

В евклидовом аффинном пространстве $\mathbb{A}(V)$ для любого непустого аффинного подпространства $\Pi \subsetneq \mathbb{A}(V)$ и любой точки $a \notin \Pi$ существует единственная точка $a_\Pi \in \Pi$, удовлетворяющая двум эквивалентным друг другу условиям:

- 1) вектор $\overrightarrow{aa}_{\Pi}$ перпендикулярен любому вектору \overrightarrow{pq} с $p,q\in\Pi$
- 2) $|aq| > |aa_{\Pi}|$ для любой точки $q \in \Pi$, отличной от p_a .

Доказательство. Поместим начало отсчёта в какую-нибудь точку $o \in \Pi$ и отождествим точки $a \in \mathbb{A}(V)$ с радиус-векторами $\overrightarrow{oa} \in V$. При этом аффинное подпространство Π превратится в векторное подпространство $U \subset V$, а точке $a \in A$ сопоставится её радиус вектор $v = \overrightarrow{oa} \in V$. Остаётся применить к ним предл. 6.3.

Определение 6.1 (РАССТОЯНИЕ ОТ ТОЧКИ ДО ПОДПРОСТРАНСТВА)

Точка $a_{\Pi} \in \Pi$ из сл. 6.4 называется *ортогональной проекцией* точки a на подпространство Π . Длина $|a-a_{\Pi}|$ называется *расстоянием* от точки a до подпространства Π .

Упражнение 6.8. Покажите, что расстояние от точки p до гиперплоскости (a,x)=d равно |d-(a,p)|/|a|.

Следствие 6.5

Для произвольного вектора $v \notin U^{\perp}$ минимум углов $\measuredangle(v,u)$ по всем $u \in U$ достигается на единственном с точностью до умножения на положительную константу векторе, а именно, на ортогональной проекции $v_U \in U$ вектора v на подпространство U.

Доказательство. Наименьшему значению угла $\measuredangle(v,u)$ отвечает наибольшее значение

$$\cos(\measuredangle(v,u)) = \frac{(v,u)}{|v|\cdot |u|}.$$

Но $(v,u)=(v_U,u)$ по свойству (2) из предл. 6.3, а в силу неравенства Коши – Буняковского – Шварца максимум отношения $(v_U,u)/|u|=(v_U,u/|u|)$ достигается тогда и только тогда, когда единичный вектор u/|u| сонаправлен с v_U .

¹См. формулу (6-1) на стр. 90.

Определение 6.2 (угол между вектором и подпространством)

Для $v \notin U^{\perp}$ угол $\measuredangle(v,U) \stackrel{\text{def}}{=} \measuredangle(v,v_U)$ называется углом между вектором v и подпространством U. Для $v \in U^{\perp}$ мы полагаем $\measuredangle(v,U) \stackrel{\text{def}}{=} \pi/2$.

Пример 6.4 (объём через «площадь основания» и «высоту»)

Рассмотрим в евклидовом пространстве линейно независимый набор из n+1 векторов

$$w = (v, u_1, u_2, \dots, u_n) \tag{6-21}$$

и обозначим через U линейную оболочку поднабора $u=(u_1,u_2,\ldots,u_n)$, составленного из последних n векторов. Тогда вектор v единственным образом представляется в виде суммы $v=v_U+v_{U^\perp}$, где $v_U\in U$, а v_{U^\perp} перпендикулярен U. Естественно назвать вектор v_{U^\perp} высотой параллелепипеда (v,u_1,u_2,\ldots,u_n) , поднятой в вершину v с основания (u_1,u_2,\ldots,u_n) . В координатах относительно произвольного ортонормального базиса в линейной оболочке набора w ориентированный объём параллелепипеда w равен

$$\det(v,\,u_1,u_2,\ldots,u_n) = \det(v-v_U,\,u_1,u_2,\ldots,u_n) = \det(v_{U^\perp},\,u_1,u_2,\ldots,u_n),$$

поскольку вектор v_U является линейной комбинацией векторов u_i . Единственным ненулевым элементом первой строки и первого столбца в матрице Грама $G_{(v_{U^{\perp}},u_1,u_2,...,u_n)}$ является квадрат длины $|v_{U^{\perp}}|^2$, стоящий в левом верхнем углу. Поэтому

$$\begin{aligned} \operatorname{Vol}^{2}(v, \, u_{1}, u_{2}, \dots, u_{n}) &= \det^{2}(v_{U^{\perp}}, \, u_{1}, u_{2}, \dots, u_{n}) = \Gamma_{(v_{U^{\perp}}, \, u_{1}, u_{2}, \dots, u_{n})} = \\ &= |v_{U^{\perp}}|^{2} \cdot \Gamma_{u} = |v_{U^{\perp}}|^{2} \cdot \operatorname{Vol}^{2}(u_{1}, u_{2}, \dots, u_{n}). \end{aligned}$$

Таким образом, неориентированный евклидов объём параллелепипеда w равен произведению евклидова объёма основания u на длину опущенной на неё высоты:

$$Vol(v, u_1, u_2, ..., u_n) = |v_{U^{\perp}}| \cdot Vol(u_1, u_2, ..., u_n).$$
(6-22)

Пример 6.5 (формулы для расстояния и угла между вектором и пространством) Формула (6-22) позволяет вычислять расстояние $\varrho(v,U)$ от конца вектора v до подпространства U, порождённого линейно независимыми векторами u_1,u_2,\ldots,u_n , как

$$\varrho(v, U) = |v_{U^{\perp}}| = \Gamma_w / \Gamma_u. \tag{6-23}$$

Поскольку $|v_{U^{\perp}}| = |v| \cdot \sin \angle(v, U)$, где $\angle(v, U)$ это угол между вектором v и подпространством U, мы заключаем, что

$$\sin \angle(v, U) = \frac{|v_{U^{\perp}}|}{|v|} = \frac{\Gamma_w}{|v| \cdot \Gamma_u}. \tag{6-24}$$

Пример 6.6 (векторные произведения в \mathbb{R}^3)

Зафиксируем в \mathbb{R}^3 какой-нибудь ортонормальный базис (u_1, u_2, u_3) положительной ориентации. Ориентированный объём параллелепипеда, натянутого на векторы

$$(a,b,c) = (u_1, u_2, u_3) \cdot \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$$

¹См. опр. 6.2 на стр. 98.

можно записать, раскладывая определитель по первому столбцу, как скалярное произведение

$$\det \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} = a_1 \cdot (b_2 c_3 - b_3 c_2) + a_2 \cdot (-b_1 c_3 + b_3 c_1) + a_3 \cdot (b_1 c_2 - b_2 c_1) = (a, [b, c])$$

вектора $a = (a_1, a_2, a_3)$ с вектором

$$[b, c] \stackrel{\text{def}}{=} (b_2 c_3 - b_3 c_2, -b_1 c_3 + b_3 c_1, b_1 c_2 - b_2 c_1) =$$

$$= \left(\det \begin{pmatrix} b_2 & c_2 \\ b_3 & c_3 \end{pmatrix} - \det \begin{pmatrix} b_1 & c_1 \\ b_3 & c_3 \end{pmatrix}, \det \begin{pmatrix} b_1 & c_1 \\ b_2 & c_2 \end{pmatrix} \right),$$

$$(6-25)$$

который называется векторным произведением векторов b и c. Поскольку

$$(b, [b, c]) = \det(b, b, c) = 0$$
 и $(, [b, c]) = \det(c, b, c) = 0$,

вектор [b, c] перпендикулярен обоим векторам b, c, а его длина

$$\left| [b,c] \right| = \frac{(a,[b,c])}{|a| \cdot \cos \measuredangle(a,[b,c])} = \frac{\operatorname{Vol}(a,b,c)}{h_a} = \operatorname{Vol}(b,c)$$

равна евклидовой площади параллелограмма, натянутого на векторы b, c. Если векторы b и c не пропорциональны, то вектор $[b,c] \neq 0$ и направлен так, что базис [b,c], b, c положителен¹. Если b и c пропорциональны, то [b,c] = 0. Это даёт однозначное геометрическое описание вектора [b,c] в терминах векторов b, c, и показывает, что он не зависит от выбора ортонормального базиса, использованного для вычисления его координат в формуле (6-25). Иначе можно сказать, что вектор $[b,c] \in V$ является прообразом ковектора

$$\omega(*, b, c) : \mathbb{R}^3 \to \mathbb{R}, \quad a \mapsto \omega(a, b, c),$$

где ω — стандартная форма ориентированного объёма на \mathbb{R}^3 , относительно задаваемого скалярным произведением изоморфизма между \mathbb{R}^3 и \mathbb{R}^{3^*} из форм. (6-14) на стр. 95.

Пример 6.7 (высшие векторные произведения)

Конструкция из прим. 6.6 переносится в старшие размерности следующим образом. Сопоставим каждому упорядоченному набору из (n-1) векторов $v_1, v_2, \ldots, v_{n-1}$ в n-мерном ориентированном евклидовом пространстве V вектор $[v_1, v_2, \ldots, v_{n-1}] \in V$, длина которого равна евклидову объёму неориентированного (n-1)-мерного параллелепипеда, натянутого на векторы v_i , и буде этот объём ненулевой, направление вектора $[v_1, v_2, \ldots, v_{n-1}] \in V$ перпендикулярно гиперплоскости, порождённой векторами v_i , и таково, что базис

$$[v_1, v_2, \dots, v_{n-1}], v_1, v_2, \dots, v_{n-1}$$

положительно ориентирован. Иначе говоря, вектор $[v_1, v_2, \dots, v_{n-1}] \in V$ является прообразом при изоморфизме $g: V \xrightarrow{\sim} V^*$ из форм. (6-14) на стр. 95 от ковектора

$$\omega(*, v_1, v_2, \dots, v_{n-1}) : \mathbb{R}^n \to \mathbb{R}, \quad u \mapsto \omega(u_1, v_1, v_2, \dots, v_{n-1}),$$

где ω — ориентирующая форма объёма на V. Таким образом, в \mathbb{R}^4 имеются тройные произведения $[v_1,v_2,v_3]$, в \mathbb{R}^5 — четверные произведения $[v_1,v_2,v_3,v_4]$ и т. д.

 $^{^{1}}$ Т. е. направленный вдоль вектора [b,c] буравчик ввинчивается при повороте от b к c по кратчайшей дуге.

Упражнение 6.9. Запишем координаты векторов $v_1, v_2, \ldots, v_{n-1}$ по строкам матрицы A размера $(n-1)\times n$ и обозначим через A_i взятый со знаком $(-1)^i$ определитель $(n-1)\times (n-1)$ подматрицы, дополнительной к i-тому столбцу, как в n° 5.4.3 на стр. 80. Покажите, что

$$[v_1, v_2, \dots, v_{n-1}] = (A_1, A_2, \dots, A_n)$$
(6-26)

и что векторное произведение $[v_1, v_2, \dots, v_{n-1}]$ кососимметрично и линейно по каждому из аргументов.

6.5. Сферы. ГМТ x, удалённых от заданной точки p на заданное расстояние r>0, называется сферой радиуса r с центром в p и обозначается

$$S(p,r) \stackrel{\text{def}}{=} \{ x \mid (\overrightarrow{px}, \overrightarrow{px}) = r^2 \}. \tag{6-27}$$

ГМТ x, удалённых от заданной точки p не далее, чем на заданное расстояние r>0, называется m радиуса r с центром в p и обозначается

$$B(p,r) \stackrel{\text{def}}{=} \{ x \mid (\overline{px}, \overline{px}) \leqslant r^2 \}. \tag{6-28}$$

Пример 6.8 (Описанная сфера симплекса)

Если точки $p_0, p_1, \ldots, p_n \in \mathbb{R}^n$ не лежат в одной гиперплоскости, то через них проходит единственная сфера, называемая *описанной сферой симплекса* $[p_0, p_1, \ldots, p_n]$. В самом деле, ГМТ x, равноудалённых от всех точек p_i , является пересечением n аффинных гиперплоскостей — срединных перпендикуляров к n отрезкам $[p_0, p_i]$ с $1 \le i \le n$. Это пересечение задаётся системой из n линейных неоднородных уравнений n

$$(\overrightarrow{p_0}\overrightarrow{p}_i, x) = \frac{(p_i, p_i) - (p_0, p_0)}{2}$$

на n-мерный вектор x. Поскольку векторы $\overline{p_0p_i}$ линейно независимы, левые части этих уравнений линейно независимы, и по предл. 5.3 на стр. 77 такая система имеет единственное решение c, которое и является центром описанной сферы.

Предложение 6.4

Пересечение сферы (соотв. шара) радиуса r с центром в p с аффинным подпространством Π , находящимся от точки p на расстоянии ϱ , пусто при $\varrho > r$, а при $\varrho \leqslant r$ представляет собою сферу (соотв. шар) радиуса $\sqrt{r^2-\varrho^2}$ в подпространстве Π с центром в ортогональной проекции p_Π точки p на подпространство Π . При $\varrho = r$ эта сфера (соотв. шар) вырождается в одну точку p_Π .

Доказательство. Пересечение $S(p,r)\cap\Pi$ задаётся внутри Π уравнением, которое получается подстановкой $\overrightarrow{px}=\overrightarrow{pp}_\Pi+\overrightarrow{p_\Pi x}$ в уравнение сферы (6-27) и имеет вид $(\overrightarrow{p_\Pi x},\overrightarrow{p_\Pi x})=r^2-\varrho^2$. \square

Упражнение 6.10. Покажите, что сфера с диаметром [a,b] представляет собою ГМТ, из которых отрезок [a,b] виден под прямым углом, т. е.

$$S\left((a+b)/2, |a-b|/2\right) = \{x \mid (\overrightarrow{xa}, \overrightarrow{xb}) = 0\}.$$

¹См. формулу (6-9) на стр. 92.

6.5. Сферы

6.5.1. Касательные. Аффинное подпространство Π , пересекающее сферу S(p,r) ровно в одной точке $q \in S(p,r)$, называется *касательным* к сфере S(p,r) в точке q. Наибольшее по включению из касательных подпространств к S(p,r) в заданной точке $q \in S(p,r)$ это гиперплоскость, проходящая через точку q перпендикулярно вектору \overrightarrow{pq} . Она называется *касательной гиперплоскостью* к сфере S(p,r) в точке $q \in S(p,r)$ и обозначается

$$T_q S(p, r) = \{ x \mid \left(\overrightarrow{pq}, \overrightarrow{qx} \right) = 0 \} = \{ x \mid \left(\overrightarrow{pq}, \overrightarrow{px} \right) = r^2 \}$$
 (6-29)

(второе описание получается из первого подстановкой $\overrightarrow{qx} = \overrightarrow{px} - \overrightarrow{pq}$).

6.5.2. Степень точки относительно сферы. Число

$$\deg_{S(p,r)} q \stackrel{\text{def}}{=} |pq|^2 - r^2$$

называется cmenehbo точки q относительно сферы S(p,r). Обратите внимание, что

$$\deg_{\mathcal{S}(p,r)}q < 0$$
 при $q \in \mathcal{B}(p,r) \setminus \mathcal{S}(p,r)$,

$$\deg_{S(p,r)} q = 0$$
 при $q \in S(p,r)$,

$$\deg_{S(p,r)} q > 0$$
 при $q \notin B(p,r)$.

В последнем случае степень точки q относительно сферы S(p,r) есть квадрат длины отрезка опущенной на сферу из точки q касательной прямой ℓ , заключённого между точкой q и точкой касания (см. рис. 6 \diamond 3).

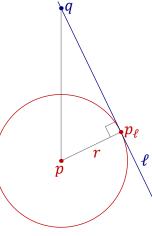


Рис. 6◊3.

Предложение 6.5

Пусть прямая ℓ проходит через точку q и пересекает сферу S(p,r) в точках t_1 и t_2 или касается её в точке $t_1=t_2$. Тогда $\deg_{S(p,r)}q=(\overrightarrow{qt}_1,\overrightarrow{qt}_2)=|qt_1|\cdot|qt_2|$ (см. рис. 6 \diamond 4).

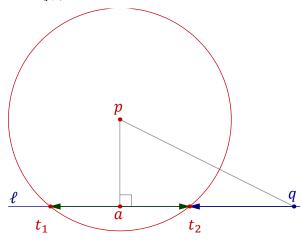


Рис. 6 \diamond 4. $\deg_{S(p,r)} q = |qt_1| \cdot |qt_2|$.

Доказательство. Обозначим через a ортогональную проекцию центра сферы p на прямую ℓ . Согласно предл. 6.4 $\overline{at}_2 = -\overline{at}_1$. Поэтому $(\overline{qt}_1, \overline{qt}_2) = (|qa| + |at_1|) \cdot (|qa| - |at_1|) = |qa|^2 - |at_1|^2 = |pq|^2 - |at_1|^2 = |pq|^2 - |pt_1|^2 = \deg_{S(p,r)} q$.

Упражнение 6.11 (радикальная ось). Покажите, что ГМТ, имеющих равные степени относительно двух данных сфер $S(p_1,r_1)$ и $S(p_2,r_2)$, представляет собою гиперплоскость, перпендикулярную линии центров (т. е. прямой (p_1,p_2)).

6.5.3. Поляры. Прямая (q,a), проходящая через точку $q \in S(p,r)$ и произвольную точку $a \neq q$, касается сферы в точке q, если и только если $\left(\overrightarrow{pq}, \overrightarrow{qa}\right) = 0$. Подставляя в это равенство $\overrightarrow{qa} = \overrightarrow{pq} - \overrightarrow{pa}$, получаем равносильное равенство

$$(\overrightarrow{pq}, \overrightarrow{pa}) = r^2. \tag{6-30}$$

Это соотношение, рассматриваемое как линейное неоднородное уравнение на a при фиксированном $q \in S(p,r)$, задаёт касательную гиперплоскость $T_qS(p,r)$ из (6-29). Если же воспринимать (6-30) как уравнение на q при фиксированном $a \neq p$, то оно задаёт гиперплоскость, перпендикулярную вектору \overline{pa} и пересекающую прямую (pa) в точке b с радиус вектором

$$\overrightarrow{pb} = r^2 \frac{\overrightarrow{pa}}{(\overrightarrow{pa}, \overrightarrow{pa})}$$

и удалённой от p на расстояние $r^2/|pa|$ в сторону точки a (см. рис. 6 \diamond 5). Эта гиперплоскость называется полярной гиперплоскостью (или полярой) точки a относительно сферы S(p,r). В свою очередь, точка a называется полюсом этой гиперплоскости. Поляра точки $a \notin B(p,r)$ может быть описана как гиперплоскость, высекающая из сферы S(p,r) её видимый из точки a контур 1 (см. рис. 6 \diamond 5). Точки, лежащие на сфере, характеризуются как точки, лежащие на своих полярах, а отличные от p точки внутри шара B(p,r) — как точки, поляры которых не пересекают сферы.

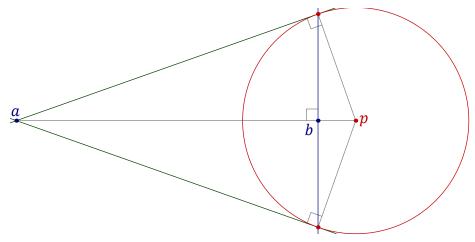


Рис. 6\$5. Полюс и поляра.

Предложение 6.6 (полярная двойственность)

Для любых точек x и y, отличных от центра сферы, точка x лежит на поляре точки y тогда и только тогда, когда точка y лежит на поляре точки x.

Доказательство. Оба условия записываются одним и тем же уравнением $(\overrightarrow{px}, \overrightarrow{py}) = r^2$.

Определение 6.3 (сопряжённые и инверсные точки)

Точки x и y называются conpяжёнными относительно сферы S(p,r), если они удовдлетворяющие условиям предл. 6.6, т. е. $(\overline{px},\overline{py}) = r^2$. Сопряжённые точки a и b называются uнверсными, если прямая (a,b) проходит через центр сферы p, т. е. $\overline{pb} = r^2 \overline{pa}/(\overline{pa},\overline{pa})$.

 $^{^{1}\}mathrm{T.\,e.}$ ГМТ касания со сферой всевозможных касательных, проходящих через точку a.

6.5. Сферы 103

6.5.4. Инверсия. Отображение, переводящее каждую точку $a \neq p$ в инверсную ей точку

$$\sigma_{p,r}: \mathbb{R}^n \setminus p \to \mathbb{R}^n \setminus p, \quad a \mapsto p + \frac{r^2 \cdot \overline{pa}}{(\overline{pa}, \overline{pa})},$$
 (6-31)

называется *инверсией* относительно сферы S(p,r). Инверсия является инволюцией на множестве всех точек, отличных от p, и сфера S(p,r) состоит в точности из неподвижных точек инверсии $\sigma_{p,r}$. Инверсия переводит в себя каждое аффинное подпространство Π , проходящее через

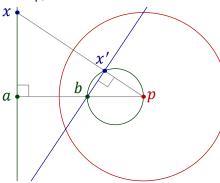


Рис. 6<6. Сфера, инверсная плоскости.

центр сферы, и действует на нём как инверсия относительно сферы $\Pi \cap S(p,r)$.

В силу полярной двойственности каждая отличная от центра инверсии точка $b \neq p$ лежит на полярах всех сопряжённых с нею точек. Последние образуют гиперплоскость, проходящую через инверсную к b точку $a = \sigma_{p,r}(b)$ перпендикулярно вектору \overline{pa} . Поляра любой точки x из этой гиперплоскости проходит через инверсную к x точку $x' = \sigma_{p,r}(x)$ и точку b, как на рис. 6 \diamond 6. Таким образом, инверсия $\sigma_{p,r}$ переводит гиперплоскость, проходящую через точку a перпендикулярно вектору \overline{pa} , в ГМТ x', из которых отрезок [p,b] виден под прямым углом, т. е. в сферу с диаметром

[p,b]. Поскольку инверсия обратна самой себе, то и наоборот, проходящая через точку p сфера с диаметром [p,b] переходит в полярную точке b гиперплоскость, перпендикулярную вектору \overrightarrow{pb} и проходящую через точку $a=\sigma_{n,r}(b)$.

Каждая не проходящая через точку p сфера C переводится инверсией $\sigma_{p,r}$ в сферу, гомотетичную сфере C относительно p с коэффициентом r^2 / δ , где $\delta = \deg p$ это степень точки p относительно сферы C, см. рис. 6 \diamond 7. Действительно, если проходящая через p прямая пересекает S в точках x_1, x_2 , то $|px_1| \cdot |px_2| = \delta$ по предл. 6.5 на стр. 101, и для точек x_1', x_2' , гомотетичных точкам x_1, x_2 относительно p с коэффициентом p с коэффициентом p с выполняются равенства

$$|px_1| \cdot |px_2'| = |px_1| \cdot |px_2| \cdot r^2 / \delta = r^2,$$

 $|px_2| \cdot |px_1'| = |px_2| \cdot |px_1| \cdot r^2 / \delta = r^2,$

означающие, что $\sigma_{p,r}(x_1)=x_2'$, а $\sigma_{p,r}(x_2)=x_1'$. Обратите внимание, что порядок точек поменялся, и что центр сферы S не обязан переводиться инверсией $\sigma_{p,r}$ в центр сферы $\sigma_{p,r}(S)$.

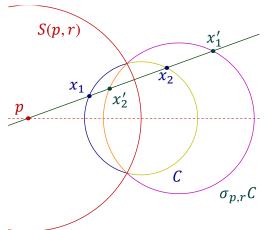


Рис. 6\diamond7. Инверсия $\sigma_{p,r}$ переводит сферу C в гомотетичную ей относительно точки p сферу.

Упражнение 6.12. Пусть радиусы r_1 , r_2 двух сфер с центрами в точках c_1 , c_2 связаны равенством $r_1^2 + r_2^2 = |c_1, c_2|^2$. Покажите, что при инверсии относительно любой из сфер вторая сфера переходит в себя, и найдите образ её центра.

 $^{^{1}}$ Т. е. обратной самой себе биекцией.

Лемма 6.1

Для произвольных двух инверсий σ_1 и σ_2 относительно не проходящих через центры друг друга сфер $S_1 = S(c_1, r_1)$ и $S_2 = S(c_2, r_2)$ выполняется равенство $\sigma_1 \sigma_2 \sigma_1 = \sigma_{\sigma_1(S_2)}$, означающее, что инверсия σ_1 переводит любую пару точек, инверсных относительно сферы S_2 , в пару точек, инверсных относительно сферы $\sigma_1(S_2)$ (ср. с упр. 3.23 на стр. 53).

Доказательство. Согласно сл. 3.8 на стр. 51 инверсность точек p,q относительно сферы S_2 означает, что все проходящие через p и q окружности и прямая (pq) пересекают сферу S_2 под прямым углом. Поскольку инверсия σ_1 биективно переводит эти окружности и прямую в прямую и окружности, проходящие через точки $\sigma_1(p)$ и $\sigma_1(q)$, и сохраняет углы между окружностями и прямыми¹, все проходящие через $\sigma_1(p)$ и $\sigma_1(q)$ окружности и прямая перпендикулярны сфере $\sigma_1(S_2)$, что означает инверсность точек $\sigma_1(p)$ и $\sigma_1(q)$ относительно сферы $\sigma_1(S_2)$.

Пример 6.9 (стереографическая проекция)

Стереографическая проекция $s_z:S \setminus z \to E_z$ сферы S=S(p,r) из лежащей на ней точки $z \in S(p,r)$ на экваториальную гиперплоскость E_z , перпендикулярную вектору \overrightarrow{zp} , совпадает с действием на сферу S(p,r) инверсии $\sigma_{z,r\sqrt{2}}$ относительно сферы $S\left(z,r\sqrt{2}\right)$ с центром в точке z, которая проходит через экватор $E_z \cap S(p,r)$ исходной сферы, как на рис. 6 \diamond 8. В частности, любая сфера $S'=H\cap S(p,r)$, высекаемая из сферы S(p,r) произвольной не проходящей через z аффинной гиперплоскостью H, перейдёт при стереографической проекции в гомотетичную сфере S' относительно точки z сферу.

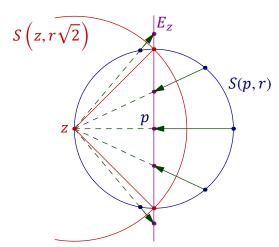


Рис. 6
68. Стереографическая проекция $s_z:S(p,r) \smallsetminus z \to E_z$ действует на сферу как инверсия
 $\sigma_{z,r\sqrt{2}}.$

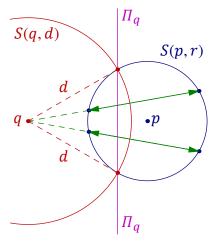


Рис. 6<9. Инверсия сферы переставляет пары коллинеарных центру инверсии точек.

Пример 6.10 (инверсия на сфере)

Всякая точка q, лежащая снаружи от данной (n-1)-мерной сферы $S=S(p,r)\subset\mathbb{R}^n$, определяет инволютивное 2 преобразование $\sigma_q\colon S\to S$, которое тождественно действует на точках пересечения $S\cap\Pi_q$ сферы S с полярной гиперплоскостью Π_q точки q и переводит каждую точку $x\in S\setminus\Pi_q$ во вторую, отличную от x точку пересечения сферы S с прямой (qx), как на рис. 6 \diamond 9.

¹См. предл. 3.6 на стр. 51.

 $^{^{2}}$ Т. е. обратное самому себе.

6.5. Сферы

Эта инволюция называется *инверсией* сферы S с центром в q, поскольку совпадает с ограничением на сферу S инверсии относительно сферы S' = S(q,d) с центром в q и квадратом радиуса $d^2 = \deg_S p = |p,q|^2 - r^2$, равным степени точки q относительно сферы S. Сфера S' пересекает сферу S по той же (n-2)-мерной сфере, что и гиперплоскость Π_q , см. рис. 6 \diamond 9.

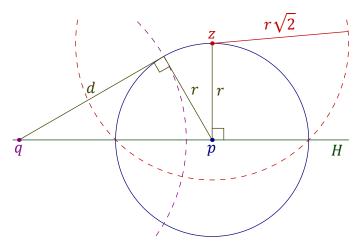


Рис. 6
$$\diamond$$
10. $\left(r\sqrt{2}\right)^2+d^2=2r^2+|q,p|^2-r^2=|q,p|^2+r^2=|q,z|^2$.

Инверсия $\sigma_{q,d}$ относительно сферы S' переводит в себя каждую проходящую через точку q гиперплоскость $H \subset \mathbb{R}^n$, действуя в ней как инверсия относительно сферы $S' \cap H$. Если

гиперплоскость Н является экваториальной для сферы S, т. е. проходит через её центр p, то действия инверсий $\sigma_{q,d}\colon H o H$ гиперплоскости H и $\sigma_q:S o S$ сферы S переводятся одно в другое стереографической проекцией s_z : $S \setminus z \to H$ из каждой из двух точек $z \in S$ с $\overrightarrow{pz} \perp H$, как в предыдущем прим. 6.9. Действительно, проекция s_z является ограничением на сферу S инверсии $\sigma_{z,r\sqrt{2}}\colon \mathbb{R}^n o \mathbb{R}^n$, которая переводит сферу S' = S(q, d) в себя по упр. 6.12, т. к. сумма квадратов радиусов сфер $S\left(z,r\sqrt{2}\right)$ и S(q,d) равна квадрату рассмояния между их центрами, см. рис. 6\$10. Поэтому согласно лем. 6.1 во всём пространстве \mathbb{R}^n выполнено равенство $\sigma_{\mathbf{z},r\sqrt{2}}\circ\sigma_{q,d}=\sigma_{q,d}\circ\sigma_{\mathbf{z},r\sqrt{2}}.$

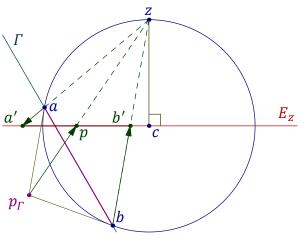


Рис. 6 \diamond 11. |p,a'|=|p,b'| для $p=s_z(p_\Gamma)$, $a'=s_z(a),\,b'=s_z(b).$

Упражнение 6.13. Покажите, что проекция сферы S(c,r) из точки $z\in S$ на перпендикулярную вектору \overrightarrow{zc} экваториальную гиперплоскость E_z переводит сферу, высекаемую из S(c,r) не проходящей через c аффинной гиперплоскостью Γ , в сферу с центром в той точке гиперплоскости E_z , куда проектируется из z полюс p_Γ гиперплоскости Γ , см. рис. 6 \diamond 11.

Ответы и указания к некоторым упражнениям

Упр. 6.4. Значение линейной формы g_{e_j} на базисном векторе e_{α} равно (e_{α}, e_j) , и значит, столбец координат этой формы в двойственном базисе e^* состоит из произведений (e_{α}, e_j) .

Упр. 6.6. Если $v \in U \cap U^{\perp}$, то (v,v) = 0, откуда v = 0.

Упр. 6.9. Для любого вектора a выполняется равенство $\omega(a, v_1, v_2, \dots, v_{n-1}) = (a, w)$ (ср. со вторым правилом Крамера¹).

Упр. 6.10. Уравнение (x-(a+b)/2,x-(a+b)/2)=((b-a)/2,(b-a)/2), задающее сферу S((a+b)/2,|a-b|/2), можно переписать как

$$((x-a)+(x-b),(x-a)+(x-b)) = ((x-a)-(x-b),(x-a)-(x-b)).$$

После раскрытия скобок и сокращения скалярных квадратов это превращается в уравнение

$$(x-a,x-b)=0.$$

Упр. 6.12. Радиус каждой из сфер равен степени её центра относительно другой сферы. Центр каждой из сфер перейдёт при инверсии относительно другой сферы в точку пересечения радикальной гиперплоскости 2 с линией центров.

¹См. предл. 5.5 на стр. 81.

 $^{^{2}}$ Т. е. ГМТ, имеющих равные степени относительно обеих сфер. В данном случае эта гиперплоскость линейно порождается пересечением сфер.