Неформальное введение

Аксиомы или определения? Есть две точки зрения на то, как должен быть организован курс геометрии. Восходящий к Евклиду аксиоматический подход лежит в основе большинства школьных учебников, хотя является не самым простым — удовлетворительная с точки зрения математической логики система «аксиом Евклида» была предложена Д. Гильбертом только в начале XX века, и лишь спустя ещё несколько десятков лет была адаптирована А. Н. Колмогоровым так, что вошла в регулярный школьный учебник в виде нескольких страниц убористого петита в добавлении, предназначенном для факультативного изучения. Альтернативный «аналитический» подход вместо аксиоматического описания основных геометрических понятий (точек, прямых, их взаимного расположения и т. п.) даваёт всем используемым объектам явные определения, основанные на известном из алгебры и анализа понятии числа.

Так, вещественную плоскость \mathbb{R}^2 можно *определить* как множество, точками в котором являются пары вещественных чисел $p=(p_1,p_2)$, а прямую на такой плоскости — как траекторию точки, равномерно движущейся в заданном направлении, т. е. как ГМТ 2 вида $p+v\cdot t=(p_1,p_2)+(v_1,v_2)\cdot t=(p_1+v_1t,p_2+v_2t)$, где параметр $t\in\mathbb{R}$ играет роль времени, $p=(p_1,p_2)\in\mathbb{R}^2$ это произвольным образом выбранная точка, отвечающая нулевому моменту времени, а *вектор* $v=(v_1,v_2)$ задаёт скорость движения. При таком определении высказывания о том, что через любые две точки плоскости проходит одна и только одна прямая и что через любую точку плоскости, не лежащую на данной прямой ℓ , проходит ровно одна прямая, не пересекающая ℓ , становятся *теоремами*.

Упражнение о.і. Докажите эти две теоремы.

Точки и векторы. Вектор $v=(v_1,v_2)$, хотя и записывается формально точно такой же парой чисел, как и точка p, является объектом совершенно иной геометрической природы. Вектор v правильно представлять себе как *преобразование сдвига*³

$$\tau_{\nu}: \mathbb{R}^2 \to \mathbb{R}^2, \quad p \mapsto p + v,$$

переводящее каждую точку $p=(p_1,p_2)$ в точку $\tau_v(p)=p+v=(p_1+v_1,p_2+v_2)$. Координаты (v_1,v_2) вектора v суть числа, описывающие этот сдвиг, т. е. разности $\tau_v(p)-p$, одинаковые для всех точек $p\in\mathbb{R}^2$. При переносе начала координат из нуля в какую-нибудь другую точку $a=(a_1,a_2)$ координаты каждой точки p поменяются и станут равны (p_1-a_1,p_2-a_2) , тогда как координаты векторов не изменятся.

Группы преобразований. Рассмотрим произвольное множество X и обозначим через $\operatorname{End}(X)$ множество всех отображений $f: X \to X$ из X в себя⁴. На множестве $\operatorname{End}(X)$ име-

¹Замечательная книга под редакцией А. Н. Колмогорова, служившая основным официальным пособием по геометрии для школ в 70-х – 80-х годах прошлого века.

²Здесь и далее аббревиатура «ГМТ» используется для сокращения фразы «геометрическое место точек».

 $^{^3}$ Или параллельный перенос.

 $^{^4}$ Такие отображения обычно называют *эндоморфизмами* множества *X*, откуда и обозначение.

ется естественная операция *композиции*, сопоставляющая упорядоченной паре отображений $f: X \to X$, $g: X \to X$, результат их последовательного выполнения справа налево: $f \circ g: X \to X$, $x \mapsto f(g(x))$.

Упражнение о.2. Приведите пример множества X и таких трёх отображений $f,g,h:X\to X$, что A) $f\circ g\neq g\circ f$ Б) $f\circ h=g\circ h$, но $f\neq g$ В) $h\circ f=h\circ g$, но $f\neq g$.

Множество отображений $G \subset \operatorname{End}(X)$ называется $\operatorname{\it zpynno} \tilde{u}$, если все отображения $g \in G$ взаимно однозначны 1 , и вместе с каждым отображением $g \in G$ обратное ему отображение 2 g^{-1} тоже принадлежит G, а вместе с каждыми двумя отображениями $g_1, g_2 \in G$ в G лежит и их композиция $g_1 \circ g_2$. Отметим, что из этих требований вытекает, что тождественное отображение Id_X , переводящее каждую точку в себя, автоматически содержится в G, поскольку представимо в виде композиции $\operatorname{Id}_X = g \circ g^{-1} = g^{-1} \circ g$, где $g \in G$ — любое преобразование из группы.

Группа сдвигов. Параллельные переносы плоскости \mathbb{R}^2 на всевозможные векторы образуют группу: обратным преобразованием к сдвигу τ_v на вектор $v=(v_1,v_2)$ является сдвиг $\tau_v^{-1}=\tau_{-v}$ на противоположный вектор $-v=(-v_1,-v_2)$, а композиция сдвигов на векторы $u=(u_1,u_2)$ и $w=(w_1,w_2)$ это сдвиг на вектор

$$u + w = (u_1 + w_1, u_2 + w_2).$$
 (0-1)

Подчеркнём, что эта формула является координатной записью для операции композиции отображений, которая сама по себе определяется без использования координат. Из формулы (0-1) вытекает, что не смотря на упр. 0.2 композиция сдвигов не зависит от того, какой сдвиг делается первым, а какой — вторым. Группа, состоящая из попарно перестановочных друг с другом преобразований заывается коммутативной или абелевой. Таким образом, векторы составляют абелеву группу преобразований плоскости \mathbb{R}^2 .

Отметим, что на множестве moчek никакого естественного сложения нет. Скажем, если пытаться определить «сумму точек» складывая их координаты, то одна и та же пара точек будет иметь разные суммы в разных координатных системах, поскольку при сдвиге начала координат в точку a от координат всех точек отнимаются координаты точки a, и точки, имевшие в исходной координатной системе координаты

$$(p_1, p_2)$$
, (q_1, q_2) и $(p_1 + q_1, p_2 + q_2)$

в сдвинутой координатной системе приобретают координаты

$$(p_1 - a_1, p_2 - a_2), (q_1 - a_1, q_2 - a_2)$$
 и $(p_1 + q_1 - a_1, p_2 + q_2 - a_2)$

так что «сумма» первых двух из них оказывается не равна третьей.

 $^{^1}$ T. е. у каждой точки $y \in X$ имеется ровно один прообраз $x \in X \,:\, g(x) = y$.

 $^{^{2}}$ Переводящее каждую точку $y \in X$ в её прообраз $x = g^{-1}(y) \in X$: g(x) = y.

 $^{^{3}}$ Т. е. $g_{1} \circ g_{2} = g_{2} \circ g_{1}$ для любых $g_{1}, g_{2} \in G$.

Как устроен этот курс. Мы будем следовать схеме, предложенной в 30-х годах XX века Г. Вейлем. Первичным геометрическим объектом для нас будет векторное пространство — абелева группа векторов, которые можно складывать друг с другом и умножать на числа по известным из школы правилам. Мы напомним список этих правил в §1 — он гораздо короче и удобнее любого списка аксиом евклидовой геометрии. Далее мы свяжем с векторными пространствами разные точечные пространства, в которых можно будет рисовать фигуры и изучать свойства этих фигур по отношению к различным геометрическим преобразованиям. Подчеркнём, что в конечном итоге все эти свойства будут выводиться из алгебраических свойств операций с векторами.

Первым делом мы покажем, как вписывается в эту картину школьная планиметрия — дадим *определение* вещественной евклидовой плоскости, основанное на свойствах векторов, и убедимся в том, что в ней выполняются все постулаты и теоремы школьной планиметрии. Затем это построение будет распространено на пространства любых размерностей над любыми полями констант.

О числах. Понятие *числа* столь же фундаментально для геометрии, сколь и понятие *вектора*. Чтобы перечислить свойства векторов необходимо зафиксировать множество констант, на которые векторы можно умножать. Для нас будет существенно, что константы образуют *поле*, т. е. их можно складывать, вычитать, умножать и делить по тем же законам, что рациональные числа. Мы всегда обозначаем поле констант через \Bbbk и называем его *основным полем или полем определения* рассматриваеой геометрии. Если специально не оговаривается противное, читатель на первых порах может без ущерба для понимания происходящего считать, что $\Bbbk = \mathbb{Q}$, \mathbb{R} , \mathbb{C} есть поле рациональных, действительных или комплексных чисел (выбирайте наиболее привычное). Однако, то обстоятельство, что многие из доказываемых ниже теорем справедливы *над любым* основным полем, следует всё-таки иметь в виду. Скажем, над полем вычетов по простому модулю p, которое состоит из p чисел, геометрические пространства становятся конечными множествами, и некоторые всем привычные картинки в этих пространствах превращаются в любопытные комбинаторные утверждения.

Ответы и указания к некоторым упражнениям

Упр. о.і. См. предл. 1.2 на стр. 18.