11.1. Группы, подгруппы, циклы. Множество G называется *группой*, если на нём задана операция композиции $G \times G \to G$, $(g_1, g_2) \mapsto g_1 g_2$ со свойствами

ассоциативность:
$$\forall f, g, h \in G \quad (fg)h = f(gh)$$
 (11-1)

наличие единицы:
$$\exists \, e \in G \, : \, \forall \, g \in G \quad eg = g \qquad \qquad (11-2)$$

наличие обратных:
$$\forall g \in G \ \exists g^{-1} \in G : g^{-1}g = e$$
 (11-3)

Группа называется коммутативной или абелевой, если дополнительно имеет место

коммутативность:
$$\forall f, g \in G \quad fg = gf$$
. (11-4)

Левый обратный к g элемент g^{-1} из (11-3) является также и правым обратным, т. е. $gg^{-1}=e$, что устанавливается умножением правой и левой части в $g^{-1}gg^{-1}=eg^{-1}=g^{-1}$ слева на левый обратный к g^{-1} элемент.

Упражнение іі.і. Убедитесь, что обратный к g элемент g^{-1} однозначно определяется элементом g и что $\left(g_1\cdots g_k\right)^{-1}=g_k^{-1}\cdots g_1^{-1}$.

Для единицы e из (11-2) при любом $g \in G$ выполнятся также и равенство ge = g, поскольку $ge = g(g^{-1}g) = (gg^{-1})g = eg = g$.

Упражнение іі.2. Убедитесь, что единичный элемент $e \in G$ единствен.

Если группа G конечна, число элементов в ней обозначается |G| и называется nopядком группы G. Подмножество $H\subset G$ называется nodzpynnoй, если оно образует группу относительно имеющейся в G композиции. Для этого достаточно, чтобы вместе с каждым элементом $h\in H$ в H лежал и обратный к нему элемент h^{-1} , а вместе с каждой парой элементов $h_1,h_2\in H$ — их произведение h_1h_2 . Единичный элемент $e\in G$ автоматически окажется в H, т. к. $e=hh^{-1}$ для произвольного $h\in H$.

Упражнение 11.3. Проверьте, что пересечение любого множества подгрупп является подгруппой.

Пример іі.і (группы преобразований)

Модельными примерами групп являются группы преобразований, обсуждавшиеся нами в n° 1.6. Все взаимно однозначные отображения произвольного множества X в себя очевидно образуют группу. Она обозначается A и называется z подгруппы $G \subset A$ и X называются z подгруппы $G \subset A$ и X называются X подгруппами преобразований множества X. Для $G \in G$ и $X \in X$ мы часто будем сокращать обозначение G(X) до G(X) подгруппа всех автоморфизмов G(X) подгруппа всех G(X) называется G(X) подгруппа всех G(X) и обозначается G(X) порядок G(X) подгруппу, обозначаемую G(X) и часто называемую знакопеременной группой. Порядок G(X) подгруппу, обозначаемую G(X) и часто называемую знакопеременной группой. Порядок G(X) подгруппу, обозначаемую G(X) и часто называемую знакопеременной группой. Порядок G(X) подгруппу, обозначаемую G(X) и часто называемую знакопеременной группой. Порядок G(X) подгруппу, обозначаемую G(X) и часто называемую знакопеременной группой.

11.1.1. Циклические группы и подгруппы. Наименьшая по включению подгруппа в G, содержащая заданный элемент $g \in G$, состоит из всевозможных целых степеней g^m элемента g, где мы, как обычно, полагаем $g^0 \stackrel{\mathrm{def}}{=} e$ и $g^{-n} \stackrel{\mathrm{def}}{=} \left(g^{-1} \right)^n$. Она называется qиклической подгруппой, порождённой g, и обозначается $\langle g \rangle$. Группа $\langle g \rangle$ абелева и является образом сюрьективного гомоморфизма абелевых групп $\varphi_g : \mathbb{Z} \twoheadrightarrow \langle g \rangle, m \mapsto g^m$, который переводит сложение в композицию. Если $\ker \varphi_g \neq 0$, то $\ker \varphi_g = (n)$ и $\langle g \rangle \simeq \mathbb{Z}/(n)$, где $n \in \mathbb{N}$ — наименьшая степень, для которой $g^n = e$. Она называется порядком элемента g и обозначается $\operatorname{ord}(g)$. В этом случае

группа $\langle g \rangle$ имеет порядок 1 $n={
m ord}\ g$ и состоит из элементов $e=g^0,\ g=g^1,\ g^2,\ \dots,\ g^{n-1}$. Если $\ker \varphi_g=0$, то $\varphi_g:\ \mathbb{Z} \hookrightarrow \langle g \rangle$ является изоморфизмом и все степени g^m попарно различны. В этом случае говорят, что g имеет бесконечный порядок и пишут ${
m ord}\ g=\infty$.

Напомним², что группа G называется μ иклической, если в ней существует элемент $g \in G$ такой, что все элементы группы являются его целыми степенями, т. е. $G = \langle g \rangle$. Элемент g называется в этом случае образующей циклической группы G. Например, аддитивная группа целых чисел \mathbb{Z} является циклической, и в качестве образующего элемента можно взять любой из двух элементов ± 1 . В предл. 3.10 на стр. 49 мы видели, что всякая конечная подгруппа в мультипликативной группе любого поля является циклической. Аддитивная группа вычетов $\mathbb{Z}/(10)$ также является циклической, и в качестве её образующего элемента можно взять любой из четырёх классов³ $[\pm 1]_6$, $[\pm 3]_6$.

Упражнение 11.4. Укажите необходимые и достаточные условия для того, чтобы конечно порождённая абелева группа $^4 G = \mathbb{Z}^r \oplus \mathbb{Z}/(p_1^{n_1}) \oplus \cdots \oplus \mathbb{Z}/(p_\alpha^{n_\alpha})$ была циклической.

Лемма іі.і

Элемент $h = g^k$ тогда и только тогда является образующей циклической группы $\langle g \rangle$ порядка n, когда нод(k,n)=1.

Доказательство. Так как $\langle h \rangle \subset \langle g \rangle$, равенство $\langle h \rangle = \langle g \rangle$ равносильно неравенству ord $h \geqslant n$. Но $h^m = g^{mk} = e$ если и только если mk : n. При нод(n,k) = 1 такое возможно только когда m|n, и в этом случае ord $h \geqslant n$. Если же $n = n_1 d$ и $k = k_1 d$, где d > 1, то $h^{n_1} = g^{kn_1} = g^{nk_1} = e$ и ord $h \leqslant n_1 < n$.

11.1.2. Разложение перестановок в композиции циклов. Перестановка $\tau \in S_n$ по кругу переводящая друг в друга какие-нибудь m различных элементов⁵

$$i_1 \mapsto i_2 \mapsto \cdots \mapsto i_{m-1} \mapsto i_m \mapsto i_1$$
 (11-5)

и оставляющая на месте все остальные элементы, называется циклом длины m.

Упражнение II.5. Покажите, что k-тая степень цикла длины m является циклом тогда и только тогда, когда нод(k,m)=1.

Цикл (11-5) часто бывает удобно обозначать $\tau = |i_1, i_2, \dots, i_m\rangle$, не смотря на то, что один и тот же цикл (11-5) допускает m различных таких записей, получающихся друг из друга циклическими перестановками элементов.

Упражнение 11.6. Сколько имеется в S_n различных циклов длины k?

Теорема іі.і

Каждая перестановка $g \in S_n$ является композицией $g = \tau_1 \cdots \tau_k$ непересекающихся перестановочных циклов $\tau_i \tau_j = \tau_j \tau_i$, и такое разложение единственно с точностью до перестановки циклов.

 $^{^{1}}$ Таким образом, порядок элемента равен порядку порождённой им циклической подгруппы.

²См. n° 3.5.1 на стр. 48.

³Обратите внимание, что остальные 6 классов не являются образующими.

⁴См. теор. 9.4 на стр. 129.

 $^{^5}$ Числа i_1,\dots,i_m могут быть любыми, не обязательно соседними или возрастающими.

Доказательство. Поскольку множество $X = \{1, 2, ..., n\}$ конечно, в последовательности

$$x \xrightarrow{g} g(x) \xrightarrow{g} g^{2}(x) \xrightarrow{g} g^{3}(x) \xrightarrow{g} \cdots,$$
 (11-6)

возникающей при применении g к произвольной точке $x \in X$, случится повтор. Так как преобразование $g: X \hookrightarrow X$ биективно, первым повторившимся элементом будет стартовый элемент x. Таким образом, каждая точка $x \in X$ под действием g движется по циклу. В силу биективности g два таких цикла, проходящие через различные точки x и y, либо не пересекаются, либо совпадают. Таким образом, перестановка g является произведением непересекающихся циклов, очевидно, перестановочных друг с другом.

Упражнение 11.7. Покажите, что два цикла $\tau_1, \tau_2 \in S_n$ перестановочны ровно в двух случаях: либо когда они не пересекаются, либо когда $\tau_2 = \tau_1^s$ и оба цикла имеют равную длину, взаимно простую с s.

Определение іі.і (цикловой тип перестановки)

Написанный в порядке нестрогого убывания набор длин непересекающихся циклов 1 , в которые раскладывается перестановка $g \in S_n$, называется цикловым типом перестановки g и обозначается $\lambda(g)$.

Цикловой тип перестановки $g \in S_n$ удобно изображать n-клеточной диаграммой Юнга, а сами циклы записывать по строкам этой диаграммы. Например, перестановка

$$g = (6, 5, 4, 1, 8, 3, 9, 2, 7) = |1, 6, 3, 4\rangle |2, 5, 8\rangle |7, 9\rangle = \begin{bmatrix} 1 & 6 & 3 & 4 \\ 2 & 5 & 8 \\ \hline 7 & 9 \end{bmatrix}$$

имеет цикловой тип , т. е. $\lambda(6, 5, 4, 1, 8, 3, 9, 2, 7) = (4, 3, 2)$. Единственной перестановкой циклового типа $\lambda = (1, \dots, 1)$ (один столбец высоты n) является тождественная перестановка Id . Диаграмму $\lambda = (n)$ (одна строка длины n) имеют (n-1)! циклов максимальной длины n.

Упражнение 11.8. Сколько перестановок в симметрической группе S_n имеют заданный цикловой тип, содержащий для каждого $i=1,\ldots,n$ ровно m_i циклов длины i?

Пример 11.2 (вычисление порядка и знака перестановки)

Порядок перестановки $g \in S_n$ равен наименьшему общему кратному длин непересекающихся циклов, из которых она состоит. Например, порядок перестановки

$$(3,\ 12,\ 7,\ 9,\ 10,\ 4,\ 11,\ 1,\ 6,\ 2,\ 8,\ 5) = |1,\ 3,\ 7,\ 11,\ 8\rangle\ |2,\ 12,\ 5,\ 10\rangle\ |4,\ 9,\ 6\rangle \in S_{12}$$

равен $5 \cdot 4 \cdot 3 = 60$. По правилу ниточек из прим. 8.2 на стр. 108 знак цикла длины ℓ равен $(-1)^{\ell-1}$. Поэтому перестановка чётна тогда и только тогда, когда у неё чётное число циклов чётной длины.

Упражнение 11.9. Найдите чётность $g = (6, 5, 4, 1, 8, 3, 9, 2, 7) \in S_9$ и вычислите g^{15} .

 $^{^{1}}$ Включая циклы длины один, отвечающие элементам, которые перестановка оставляет на месте.

11.2. Группы фигур. Для любой фигуры Φ в евклидовом пространстве \mathbb{R}^n биективные отображения $\Phi \to \Phi$ индуцированные ортогональными линейными преобразованиями пространства \mathbb{R}^n , переводящими фигуру Φ в себя, образуют группу преобразований фигуры Φ . Эта группа называется полной группой фигуры Φ и обозначается O_{Φ} . Подгруппу $O_{\Phi} \subset O_{\Phi}$, состоящую из биекций, индуцированных собственными ортогональными операторами $\mathbb{R}^n \to \mathbb{R}^n$, мы будем называть собственной группой фигуры Φ . Если фигура $\Phi \subset \mathbb{R}^n$ содержится в некоторой гиперплоскости $\Pi \subset \mathbb{R}^n$, то собственная группа фигуры Φ совпадает с полной: беря композицию любого несобственного движения из группы фигуры с отражением в плоскости Π , мы получаем собственное движение, которое действует на фигуру Φ точно также, как и исходное несобственное движение.

Упражнение II.10. Изготовьте модели пяти платоновых тел — тетраэдра, октаэдра, куба, додекаэдра и икосаэдра (см. рис. $11 \diamond 5$ – рис. $11 \diamond 8$ на стр. 155).

Пример II.3 (группы диэдров D_n)

Группа правильного плоского n-угольника, лежащего в пространстве \mathbb{R}^3 так, что его центр находится в нуле, обозначается D_n и называется n-той группой диэдра. Простейший диэдр — двуугольник — возникает при n=2. Его можно представлять себе как вытянутую симметричную луночку с двумя сторонами, изображённую на рис. $11 \diamond 1$. Группа D_2 такой луночки совпадает с группами описанного вокруг неё прямоугольника и вписанного в неё ромба 4 . Она состоит из тождественного отображения и трёх поворотов на 180° вокруг перпендикулярных друг другу осей, одна из которых проходит через вершины луночки, другая — через середины её сторон, а третья перпендикулярна плоскости луночки и проходит её центр.

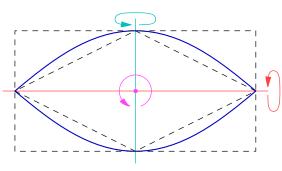


Рис. 11\diamond1. Двуугольник D_2 .

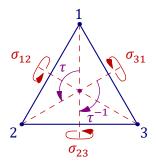


Рис. 11 > 2. Группа треугольника.

Упражнение
 ії. Ії. Убедитесь, что $D_2\simeq \mathbb{Z}/(2)\oplus \mathbb{Z}/(2).$

Следующая диэдральная группа — группа треугольника D_3 — состоит из шести движений: тождественного, двух поворотов τ , τ^{-1} на $\pm 120^\circ$ вокруг центра треугольника и трёх осевых симметрий σ_{ij} относительно его медиан (см. рис. 11 \diamond 2). Так как движение плоскости однозначно

 $^{^1}$ Напомню, что eвклидовость означает фиксацию в векторном пространстве \mathbb{R}^n симметричного билинейного положительного скалярного произведения $V \times V \to \mathbb{R}$, обозначаемого (v, w).

 $^{^2}$ Линейный оператор $F: \mathbb{R}^n \to \mathbb{R}^n$ на евклидовом пространстве \mathbb{R}^n называется *ортогональным*, если он сохраняет скалярное произведение, т. е. $\forall \, v, w \in \mathbb{R}^n \, (Fv, Fw) = (v, w)$ (достаточно, чтобы это равенство выполнялось при v = w).

 $^{^{3}}$ T. е. ортогональными операторами, сохраняющими ориентацию или, что то же самое, с определителем 1.

 $^{^4}$ Мы предполагаем, что луночка такова, что оба они не квадраты.

11.2. Группы фигур 153

задаётся своим действием на вершины треугольника, группа треугольника D_3 изоморфна группе перестановок S_3 его вершин. При этом повороты на $\pm 120^\circ$ отождествляются с циклическими перестановками (2,3,1),(3,1,2), а осевые симметрии — с транспозициями $\sigma_{23}=(1,3,2),$ $\sigma_{13}=(3,2,1),$ $\sigma_{12}=(2,1,3).$ Поскольку движение плоскости, переводящее в себя правильный n-угольник, однозначно определяется своим действием на аффинный репер, образованный какой-нибудь вершиной и примыкающей к ней парой сторон, группа диэдра D_n при каждом $n\geqslant 2$ состоит из 2n движений: выбранную вершину можно перевести в любую из n вершин, после чего одним из двух возможных способов совместить рёбра. Эти 2n движений суть n поворотов вокруг центра многоугольника на углы n0 севез вершину и середину противоположной стороны, а при чётном n1 через пары противоположных вершин и через середины противоположных сторон (см. рис. n10).

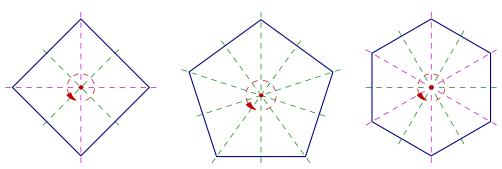


Рис. 11\diamond3. Оси диэдров D_4 , D_5 и D_6 .

Упражнение
 ії.12. Составьте таблицы умножения в группах D_3 , D_4 и D_5 , аналогичные таблице из форм. (1-24) на стр. 13.

ПРИМЕР 11.4 (ГРУППА ТЕТРАЭДРА)

Поскольку каждое движение трёхмерного евклидова пространства \mathbb{R}^3 однозначно задаётся своим действием на вершины правильного тетраэдра и это действие может быть произвольным, полная группа правильного тетраэдра с центром в нуле изоморфна группе S_4 перестановок его вершин и состоит из 24 движений. Собственная группа состоит из $12=4\cdot 3$ движений: поворот тетраэдра однозначно задаётся своим действием на аффинный репер, образованный какой-нибудь вершиной и тремя выходящими из неё рёбрами, и может переводить эту вершину в любую из четырёх вершин, после чего остаются ровно три возможности для совмещения рёбер, сохраняющего ориентацию пространства. Полный список всех собственных движений тетраэдра таков (см. рис. $11\diamond 4$): тождественное, $4\cdot 2=8$ поворотов на углы $\pm 120^\circ$ вокруг прямых, проходящих через вершину и центр противоположной грани, а

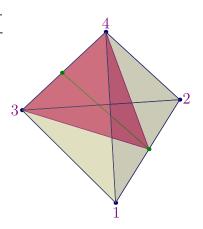


Рис. 11\diamond4. Плоскость симметрии σ_{12} и ось поворота на 180 $^{\circ}$.

 $^{^{1}}$ При k=0 получается тождественное преобразование.

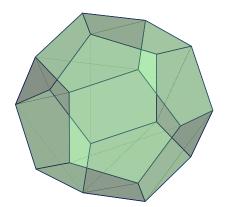
 $^{^2}$ Или, что то же самое, поворотов на 180° в пространстве.

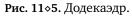
также 3 поворота на 180° вокруг прямых, проходящих через середины противоположных рёбер. В несобственной группе, помимо перечисленных поворотов, имеется 6 отражений σ_{ij} в плоскостях, проходящих через середину ребра [i,j] и противоположное ребро. При изоморфизме с S_4 отражение σ_{ij} переходит в транспозицию букв i и j, повороты на $\pm 120^\circ$, представляющие собой всевозможные композиции $\sigma_{ij}\sigma_{jk}$ с попарно различными i,j,k, переходят в циклические перестановки букв i,j,k, три вращения на $\pm 180^\circ$ относительно осей, соединяющих середины противоположных рёбер, — в одновременные транспозиции непересекающихся пар букв: $\sigma_{12}\sigma_{34}=(2,1,4,3),\sigma_{13}\sigma_{24}=(3,4,1,2),\sigma_{14}\sigma_{23}=(4,3,2,1).$

Упражнение II.13. Убедитесь, что вместе с тождественным преобразованием эти три поворота образуют группу двуугольника D_2 .

Оставшиеся шесть несобственных преобразований тетраэдра отвечают шести циклическим перестановкам вершин $|1234\rangle$, $|1243\rangle$, $|1324\rangle$, $|1342\rangle$, $|1423\rangle$, $|1432\rangle$ и реализуются поворотами на $\pm 90^\circ$ относительно прямых, проходящих через середины противоположных рёбер с последующим отражением в плоскости, проходящей через центр тетраэдра и перпендикулярной оси поворота.

Упражнение 11.14. Выразите эти 6 движений через отражения σ_{ij} .





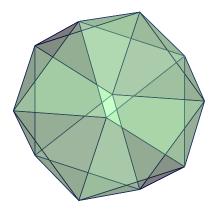
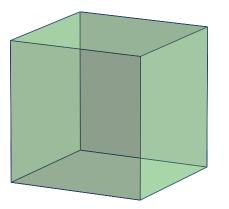


Рис. 11 6. Икосаэдр.

Пример 11.5 (группа додекаэдра)

Как и для тетраэдра, всякое вращение додекаэдра однозначно задаётся своим действием на аффинный репер, образованный вершиной и тремя выходящими из неё рёбрами, и может переводить эту вершину в любую из 20 вершин, а затем тремя способами совмещать рёбра с сохранением ориентации. Поэтому собственная группа додекаэдра (см. рис. $11 \diamond 5$ на стр. $15 \diamond 4$) состоит из $20 \cdot 3 = 60$ движений: $6 \cdot 4 = 24$ поворотов на углы $2\pi k/5$, $1 \leqslant k \leqslant 4$, вокруг осей, проходящих через центры противоположных граней додекаэдра, $10 \cdot 2 = 20$ поворотов на углы $\pm 2\pi/3$ вокруг осей, проходящих через противоположные вершины, 15 поворотов на 180° вокруг осей, проходящих через середины противоположных рёбер, и тождественного преобразования. Полная группа додекаэдра состоит из $20 \cdot 6 = 120$ движений и помимо перечисленных 60 поворотов содержит их композиции с центральной симметрией относительно центра додекаэдра.

Упражнение 11.15. Покажите что полные группы куба, октаэдра и икосаэдра состоят, соответственно из 48, 48 и 120 движений, а собственные — из 24, 24 и 60 поворотов.



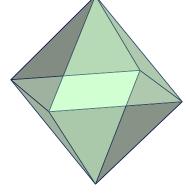


Рис. 11<7. Куб.

Рис. 11 8. Октаэдр.

11.3. Гомоморфизмы групп. Отображение групп $\varphi: G_1 \to G_2$ называется гомоморфизмом, если оно переводит композицию в композицию, т. е. для любых $g,h \in G_1$ в группе G_2 выполняется соотношение $\varphi(gh) = \varphi(g)\varphi(h)$. Термины эпиморфизм, мономорфизм и изоморфизм применительно к отображению групп далее по умолчанию будут подразумевать, что это отображение является гомоморфизмом групп.

Упражнение 11.16. Убедитесь, что композиция гомоморфизмов тоже является гомоморфизмом.

Каждый гомоморфизм групп $\varphi: G_1 \to G_2$ переводит единицу e_1 группы G_1 в единицу e_2 группы G_2 : равенство $\varphi(e_1) = e_2$ получается из равенств $\varphi(e_1)\varphi(e_1) = \varphi(e_1e_1) = \varphi(e_1)$ умножением правой и левой части на $\varphi(e_1)^{-1}$. Кроме того, для любого $g \in G$ выполняется равенство $\varphi(g^{-1}) = \varphi(g)^{-1}$, поскольку $\varphi(g^{-1})\varphi(g) = \varphi(g^{-1}g) = \varphi(e_1) = e_2$. Поэтому образ

$$\operatorname{im} \varphi \stackrel{\text{\tiny def}}{=} \varphi(G_1) \subset G_2$$

гомоморфизма групп является подгруппой группы G_2 . Полный прообраз единицы $e_2 \in G_2$

$$\ker\varphi\stackrel{\scriptscriptstyle\rm def}{=}\varphi^{-1}\left(e_2\right)=\left\{g\in G_1\ \middle|\ \varphi(g_1)=e_2\right\}\ .$$

называется ядром гомоморфизма φ и является подгруппой в G_1 , ибо из равенств $\varphi(g)=e_2$, $\varphi(h)=e_2$ вытекает равенство $\varphi(gh)=\varphi(g)\varphi(h)=e_2e_2=e_2$, а из равенства $\varphi(g)=e_2$ — равенство $\varphi(g^{-1})=\varphi(g)^{-1}=e_2^{-1}=e_2$.

Предложение 11.1

Все непустые слои произвольного гомоморфизма групп $\varphi: G_1 \to G_2$ находится во взаимно однозначном соответствии его ядром $\ker \varphi$, причём $\varphi^{-1}\big(\varphi(g)\big) = g(\ker \varphi) = (\ker \varphi)g$, где $g(\ker \varphi) \stackrel{\text{def}}{=} \{gh \mid h \in \ker \varphi\}$ и $(\ker \varphi)g \stackrel{\text{def}}{=} \{hg \mid h \in \ker \varphi\}$.

Доказательство. Если $\varphi(t) = \varphi(g)$, то $\varphi(tg^{-1}) = \varphi(t)\varphi(g)^{-1} = e$ и $\varphi(g^{-1}t) = \varphi(g)^{-1}\varphi(t) = e$, т. е. $tg^{-1} \in \ker \varphi$ и $g^{-1}t \in \ker \varphi$. Поэтому $t \in (\ker \varphi)g$ и $t \in g(\ker \varphi)$. Наоборот, для всех $h \in \ker \varphi$ выполняются равенства $\varphi(hg) = \varphi(h)\varphi(g) = \varphi(g)$ и $\varphi(gh) = \varphi(g)\varphi(h) = \varphi(g)$. Тем самым, полный прообраз $\varphi^{-1}(\varphi(g))$ элемента $\varphi(g)$ совпадает и с $(\ker \varphi)g$, и с $g(\ker \varphi)$, а $(\ker \varphi)g$ и $g(\ker \varphi)$ совпадают друг с другом. Взаимно обратные биекции

$$\ker \varphi \xrightarrow{h\mapsto gh} g(\ker \varphi)$$

между ядром и слоем $\varphi^{-1}(\varphi(g)) = g(\ker \varphi)$ задаются левым умножением элементов ядра на g, а элементов слоя — на g^{-1} .

Следствие 11.1

Для того, чтобы гомоморфизм групп $\varphi: G_1 \to G_2$ был инъективен, необходимо и достаточно, чтобы его ядро исчерпывалось единичным элементом.

Следствие 11.2

Для любого гомоморфизма конечных групп $\varphi: G_1 \to G_2$ выполнено равенство

$$|\operatorname{im}(\varphi)| = |G_1|/|\ker(\varphi)|. \tag{11-7}$$

В частности, $|\ker \varphi|$ и $|\operatorname{im} \varphi|$ делят $|G_1|$.

Пример 11.6 (ЗНАКОПЕРЕМЕННЫЕ ГРУППЫ)

Согласно упр. 8.4 на стр. 108 имеется мультипликативный гомоморфизм $\operatorname{sgn}: S_n \to \{\pm 1\}$, сопоставляющий перестановке её знак. Ядро этого гомоморфизма обозначается $A_n = \ker \operatorname{sgn} u$ называется *знакопеременной группой* или группой чётных перестановок. Порядок $|A_n| = n!/2$.

Пример 11.7 (линейные группы)

Все линейные автоморфизмы произвольного векторного пространства V над произвольным полем \Bbbk образуют *полную линейную группу* GL(V). В n° 8.1.4 на стр. 111 мы построили гомоморфизм полной линейной группы в мультипликативную группу \Bbbk^* поля \Bbbk , сопоставляющий невырожденному линейному оператору $F: V \hookrightarrow V$ его определитель:

$$\det: \operatorname{GL}(V) \to \mathbb{k}^*, \quad F \mapsto \det F.$$
 (11-8)

Ядро этого гомоморфизма называется специальной линейной группой и обозначается

$$SL(V) = \ker \det = \{F : V \Rightarrow V \det F = 1\}.$$

Если $\dim V = n$ и поле $\mathbbm{k} = \mathbbm{F}_q$ состоит из q элементов, полная линейная группа конечна и

$$\left|\operatorname{GL}_n(\mathbb{F}_q)\right| = (q^n-1)(q^n-q)(q^n-q^2) \, \cdots \, (q^n-q^{n-1}) \, ,$$

поскольку элементы $\mathrm{GL}(V)\simeq\mathrm{GL}_n(\mathbb{F}_q)$ взаимно однозначно соответствуют базисам пространства V.

Упражнение 11.17. Убедитесь в этом.

Поскольку гомоморфизм (11-8) сюрьективен порядок специальной линейной группы

$$\left|\mathrm{SL}_n(\mathbb{F}_q)\right| = \left|\mathrm{GL}_n(\mathbb{F}_q)\right| / \left|\mathbb{k}^*\right| (q^n-1)(q^n-q)(q^n-q^2) \, \cdots \, (q^n-q^{n-1})/(q-1)$$

Пример 11.8 (проективные группы)

Напомню², что с каждым векторным пространством V ассоциировано *проективное пространство* $\mathbb{P}(V)$, точками которого являются одномерные векторные подпространства в V или, что

 $^{^{1}}$ Диагональный оператор F с собственными значениями (λ , 1, 1, ..., 1) имеет $\det F = \lambda$.

 $^{^2}$ Мы предполагаем, что читатель знаком с проективными пространствами и проективными преобразованиями по курсу геометрии.

то же самое, классы пропорциональности ненулевых векторов в V. Каждый линейный оператор $F \in \mathrm{GL}(V)$ корректно задаёт биекцию $\overline{F}: \mathbb{P}(V) \to \mathbb{P}(V)$, переводящую класс вектора $v \neq 0$ в класс вектора F(v). Таким образом возникает гомоморфизм $F \mapsto \overline{F}$ группы $\mathrm{GL}(V)$ в группу биективных преобразований проективного пространства $\mathbb{P}(V)$. Образ этого гомоморфизма обозначается $\mathrm{PGL}(V)$ и называется проективной линейной группой пространства V. Из курса геометрии известно, что два оператора $F,G \in \mathrm{GL}(V)$ тогда и только тогда задают одинаковые преобразования $\overline{F}=\overline{G}$ проективного пространства $\mathbb{P}(V)$, когда они пропорциональны, т. е. $F=\lambda G$ для некоторого $\lambda \in \mathbb{R}^*$. Поэтому ядром эпиморфизма групп

$$\pi: \operatorname{GL}(V) \twoheadrightarrow \operatorname{PGL}(V), \quad F \mapsto \overline{F}$$
 (11-9)

является подгруппа гомотетий $\Gamma \simeq \mathbb{R}^*$, состоящая из диагональных скалярных операторов $v \mapsto \lambda v, \lambda \in \mathbb{R}^*$. Таким образом, группа $\mathrm{PGL}(V)$ образована классами пропорциональности линейных операторов. Классы пропорциональности операторов с единичным определителем образуют в ней подгруппу, обозначаемую $\mathrm{PSL}(V) \subset \mathrm{PGL}(V)$. Ограничение эпиморфизма (11-9) на подгруппу $\mathrm{SL}(V) \subset \mathrm{GL}(V)$ доставляет эпиморфизм

$$\pi'$$
: $SL(V) \Rightarrow PSL(V)$, $F \mapsto \overline{F}$ (11-10)

ядром которого является конечная мультипликативная подгруппа $\mu_n(\mathbb{k}) \subset \mathbb{k}^*$ содержащихся в поле \mathbb{k} корней n-той степени из единицы, где $n = \dim V = \dim \mathbb{P}(V) + 1$.

Пример II.9 (эпиморфизм $S_4 woheadrightarrow S_3$)

На проективной плоскости \mathbb{P}_2 над любым полем \mathbb{R} с каждой четвёркой точек a, b, c, d, никакие три из которых не коллинеарны связана фигура, образованная тремя парами проходящих через эти точки прямых²

$$(ab)$$
 и (cd) , (ac) и (bd) , (ad) и (bc) (11-11)

и называемая четырёхвершинником (см. рис. $11 \diamond 9$). Пары прямых (11-11) называются противоположными сторонами четырёхвершинника. С четырёхвершинником abcd ассоциирован треугольник xyz с вершинами в точках пересечения пар противоположных сторон

$$x = (ab) \cap (cd), y = (ac) \cap (bd), z = (ad) \cap (bc)$$
 (11-12)

Каждая перестановка вершин a,b,c,d однозначно определяет линейное проективное преобразование 3 плоскости, что даёт вложение $S_4 \hookrightarrow \mathrm{PGL}_3(\mathbb{k})$. Преобразования

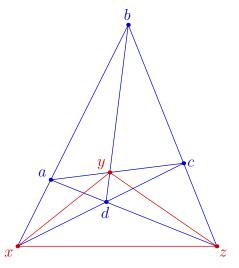


Рис. 11 9. Четырёхвешинник и ассоциированный треугольник.

из S_4 переводят ассоциированный треугольник xyz в себя, переставляя его вершины x,y,z согласно формулам (11-12). Например, 3-цикл $(b,c,a,d)\in S_4$ задаёт циклическую перестановку

 $^{^{1}}$ Напомню, что по определению $\dim \mathbb{P}(V) \stackrel{\mathrm{def}}{=} \dim V - 1$.

 $^{^{2}}$ Они отвечают трём возможным способам разбить точки a,b,c,d на две пары.

³Напомню, что каждое линейное проективное преобразование $\overline{F} \in PGL(V)$ однозначно определяется своим действием на любые $\dim V + 1$ точек пространства $\mathbb{P}(V)$, никакие $\dim V$ из которых не лежат в одной гиперплоскости.

(y,z,x), а транспозиции (b,a,c,d), (a,c,b,d) и (c,b,a,d) дают транспозиции (x,z,y), (y,x,z) и (z,y,x) соответственно. Таким образом, мы получаем сюрьективный гомоморфизм $S_4 \twoheadrightarrow S_3$. Его ядро имеет порядок 4!/3! = 4 и состоит из тождественной перестановки и трёх пар независимых транспозиций (b,a,d,c), (c,d,a,b), (d,c,b,a).

Пример II.IO (S_4 и собственная группа куба)

Линейные преобразования евклидова пространства \mathbb{R}_3 , составляющие собственную группу куба с центром в нуле, действуют на четырёх прямых $a,\,b,\,c,\,d$, соединяющих противоположные вершины куба, а также на трёх прямых x, y, z, соединяющих центры его противоположных граней, см. рис. 11

•10. На проективной плоскости $\mathbb{P}_2=\mathbb{P}(\mathbb{R}^3)$ эти 7 прямых становятся вершинами четырёхвершинника abcd и ассоциированного с ним треугольника xyz, как на рис. 11 \diamond 9. Поворот на 180° вокруг оси, соединяющей середины противоположных рёбер куба, меняет местами примыкающие к этому ребру диагонали и переводит в себя каждую их двух оставшихся диагоналей. Тем самым, вращения куба осуществляют транспозиции любых двух соседних диагоналей, и мы имеем сюрьективный гомоморфизм $\mathrm{SO}_{\mathrm{кy6}} o S_4$. Так как обе группы имеют порядок 24, это изоморфизм. Он переводит 6 поворотов на $\pm 90^{\circ}$ вокруг прямых x, y, z в 6 циклов длины 4 циклового типа _____, 3 поворота на 180° вокруг тех же прямых — в 3 пары независимых транспозиций циклового типа |--|, 8 поворотов на $\pm 120^\circ$ вокруг прямых a, $b,\,c,\,d$ — в 8 циклов длины 3 циклового типа $\overline{\hspace{1cm}}$, а 6 поворотов на 180° вокруг осей, проходящих через середины противоположных рёб $\overline{ ext{ep}}$ — в 6 простых транспозиций циклового типа . Гомоморфизм $\mathrm{SO}_{\mathrm{кy6}} o S_3$, возникающий из действия группы куба на прямых $x,\,y,\,z,$ согласован с изоморфизмом $SO_{\text{куб}} \xrightarrow{\sim} S_4$ и эпиморфизмом $S_4 \twoheadrightarrow S_3$ из предыдущего прим. 11.9. Его ядро состоит из собственных ортогональных преобразований евклидова пространства $\mathbb{R}^3,$ переводящих в себя каждую из декартовых координатных осей $x,\,y,\,z$ в \mathbb{R}^3 , и совпадает, таким образом, с группой двуугольника D_2 с осями $x,\,y,\,z.$ В таком контексте эту группу иногда называют четвертной группой Клейна и обозначают V_4 . Изоморфизм $\mathrm{SO}_{\mathrm{куб}} \, \stackrel{\sim}{ o} \, S_4$ переводит её в ядро эпиморфизма $S_4 3$ из прим. 11.9.

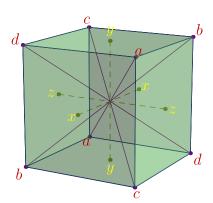


Рис. 11<10. От куба к четырёхвершиннику.

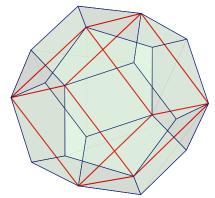


Рис. 11<11. Один из пяти кубов на додекаэдре.

Пример іі.іі (собственная группа додекаэдра и A_5)

Любая диагональ любой грани додекаэдра единственным образом достраивается до лежащего на поверхности додекаэдра куба, образованного диагоналями граней так, что в каждой грани

рисуется ровно одна диагональ¹, как на рис. $11 \diamond 11$. Всего на поверхности додекаэдра имеется ровно 5 таких кубов — они биективно соответствуют пяти диагоналям какой-либо фиксированной грани. Собственная группа додекаэдра переставляет эти кубы друг с другом, что даёт гомоморфизм собственной группы додекаэдра в симметрическую группу S_5 :

$$\psi_{\text{дод}}: SO_{\text{дод}} \to S_5$$
 (11-13)

Глядя на модель додекаэдра, легко видеть, что образами $20 \cdot 3 = 60$ поворотов, из которых состоит группа $SO_{\text{дод}}$ будут в точности 60 чётных перестановок: $6 \cdot 4 = 24$ поворота на углы $2\pi k/5$, $1 \le k \le 4$, вокруг осей, проходящих через центры противоположных граней, переходят во всевозможные циклы длины 5, т. е. в 24 перестановки циклового типа (10 \cdot 2); $10 \cdot 2 = 20$ поворотов на углы $\pm 2\pi/3$ вокруг осей, проходящих через противоположные вершины додекаэдра, переходят во всевозможные циклы длины 3, т. е. в 20 перестановок циклового типа (15 поворотов на 180° вокруг осей, проходящих через середины противоположных рёбер додекаэдра, переходят во всевозможные пары независимых транспозиций, т. е. в 10 перестановок циклового типа (16 перестановок диклового типа (17 переходят во всевозможные пары независимых транспозиций, т. е. в 10 перестановок циклового типа (17 переход от собственной группы додекаэдра со знакопеременной подгруппой $A_5 \subset S_5$. В отличие от прим. 11.4 переход от собственной группы додекаэдра к полной не добавляет новых перестановок кубов, поскольку каждое несобственное движение является композицией собственного движения и центральной симметрии, которая переводит каждый из кубов в себя.

Упражнение II.18. Покажите, что симметрическая группа S_5 не изоморфна полной группе додекаэдра.

11.4. Действие группы на множестве. Пусть G — группа, а X — множество. Обозначим через $\operatorname{Aut}(X)$ группу всех взаимно однозначных отображений из X в себя. Гомоморфизм

$$\varphi: G \to \operatorname{Aut}(X)$$

называется ∂ ействием группы G на множестве X или nре ∂ ставлением группы G автоморфизмами множества X. Отображение $\varphi(g): X \to X$, отвечающее элементу $g \in G$ при действии φ часто бывает удобно обозначать через $\varphi_g: X \to X$. Тот факт, что сопоставление $g \mapsto \varphi_g$ является гомоморфизмом групп, означает, что $\varphi_{gh} = \varphi_g \circ \varphi_h$ для всех $g,h \in G$. Если понятно, о каком действии идёт речь, мы часто будем сокращать $\varphi_g(x)$ до gx. При наличии действия группы G на множестве X мы пишем G: X. Действие называется mранзитивным, если любую точку множества X можно перевести в любую другую точку каким-нибудь преобразованием из группы G, т. е. $\forall x,y\in X\;\exists\;g\in G:gx=y$. Более общим образом, действие называется m-транзитивным, если любые два упорядоченных набора из m различных точек множества X можно перевести друг в друга подходящими преобразованиями из G. Действие называется свободным, если каждый отличный от единицы элемент группы действует на X без неподвижных точек, т. е. $\forall g \in G$ $\forall x \in X \ gx=x \Rightarrow g=e$. Действие $\varphi: G \to \operatorname{Aut} X$ называется m0 не тождественно, т. е. когда если каждый отличный от единицы элемент группы действует на X не тождественно, т. е. когда

 $^{^{1}}$ Проще всего это увидеть на модели додека
эдра, которую мы ещё раз настоятельно рекомендуем изготовить.

 $\ker \varphi = e$. Точное представление отождествляет G с группой преобразований $\varphi(G) \subset \operatorname{Aut}(X)$ множества X. Отметим, что любое свободное действие точно.

Если группа G действует на множестве X, то она действует и на подмножествах множества X: элемент $g \in G$ переводит подмножество $M \subset X$ в подмножество $gM = \{gm \mid m \in M\}$. При этом отображение $g: M \to gM$, $x \mapsto gx$ биективно, и обратным к нему является отображение $g^{-1}: gM \to g$, $\mapsto g^{-1}y$, ибо $g^{-1}gx = ex = x$. Говорят, что элемент $g \in G$ нормализует подмножество $M \subset X$, если gM = M, т. е. $gx \in M$ для каждого $x \in M$. Каждый такой элемент задаёт биекцию $g|_M: M \to M$. Если эта биекция тождественна, т. е. gx = x для всех $x \in M$, то говорят, что элемент g централизует подмножество M. Множество всех элементов $g \in G$, нормализующих (соотв. централизующих) данное подмножество $M \subset X$ обозначается N(M) (соотв. Z(M)) и называется нормализатором (соотв. централизатором) подмножества $M \subset X$ при заданном действии группы G на X.

Упражнение іі.і9. Убедитесь, что N(M) и Z(M) являются подгруппами в G.

Пример 11.12 (регулярные действия)

Обозначим через X множество элементов группы G, а через $\operatorname{Aut}(X)$ — группу автоморфизмов этого множества 2 . Отображение $\lambda: G \to \operatorname{Aut} X$, переводящее элемент $g \in G$ в преобразование $^3\lambda_g: x \mapsto gx$ левого умножения на g является гомоморфизмом групп, поскольку

$$\lambda_{gh}(x) = ghx = \lambda_g(hx) = \lambda_g(\lambda_h(x)) = \lambda_g \circ \lambda_h(x).$$

Оно называется левым регулярным действием группы G на себе. Так как равенство gh=h в группе G влечёт равенство g=e, левое регулярное действие свободно и, в частности, точно. Симметричным образом, правое регулярное действие $\varrho_g: G \to \operatorname{Aut}(X)$ сопоставляет элементу $g \in G$ преобразование $x \mapsto xg^{-1}$ правого умножения на обратный $g \to xg$ элемент.

Упражнение 11.20. Убедитесь, что ϱ_a является свободным действием.

Тем самым, любая абстрактная группа G может быть реализована как группа преобразований некоторого множества. Например, левые регулярные представления числовых групп реализуют аддитивную группу \mathbb{R} группой сдвигов $\lambda_v: x\mapsto x+v$ числовой прямой, а мультипликативную группу \mathbb{R}^* — группой гомотетий $\lambda_c: x\mapsto cx$ проколотой прямой $\mathbb{R}^*=\mathbb{R}\setminus\{0\}$.

Пример 11.13 (присоединённое действие)

Отображение $\mathrm{Ad}: G \to \mathrm{Aut}(G)$, сопоставляющее элементу $g \in G$ автоморфизм сопряжения этим элементом

$$\operatorname{Ad}_{g}: G \to G, \quad h \mapsto ghg^{-1},$$
 (11-14)

называется присоединённым действием группы G на себе.

Упражнение 11.21. Убедитесь, что $\forall g \in G$ сопряжение (11-14) является гомоморфизмом из G в G и что отображение $g \mapsto \mathrm{Ad}_g$ является гомоморфизмом из G в $\mathrm{Aut}\ G$.

 $^{^{1}}$ В этом случае также говорят, что подмножество *M* ⊂ *X* является *g*-инвариантным.

 $^{^2}$ Возможно, не перестановочных с имеющейся в G композицией, т. е. не обязательно являющихся автоморфизмами $\it zpynnы G$.

³Обратите внимание, что это преобразование множества X не является гомоморфизмом группы G, поскольку равенство $g(h_1h_2)=(gh_1)(gh_2)$, вообще говоря, не выполняется.

⁴Появление g^{-1} не случайно: проверьте, что сопоставление элементу $g \in G$ отображения правого умножения на g является не гомоморфизмом, а антигомоморфизмом (т. е. оборачивает порядок сомножителей в произведениях).

Образ присоединённого действия $\mathrm{Ad}(G)\subset \mathrm{Aut}\,G$ обозначается $\mathrm{Int}(G)$ и называется группой внутренних автоморфизмов группы G. Не лежащие в $\mathrm{Int}(G)$ автоморфизмы группы G называются внешними. В отличие от левого и правого регулярных действий присоединённое действие, вообще говоря, не свободно и не точно. Например, если группа G абелева, все внутренние автоморфизмы (11-14) тождественные, и ядро присоединённого действия в этом случае совпадает со всей группой. В общем случае $\ker(\mathrm{Ad})$ образовано такими $g\in G$, что $ghg^{-1}=h$ для всех $h\in G$. Последнее равенство равносильно равенству gh=hg и означает, что g коммутирует со всеми элементами группы. Подгруппа элементов, перестановочных со всеми элементами группы G и обозначается

$$Z(G) = \ker(\mathrm{Ad}) = \{ g \in G \mid \forall h \in G \ gh = hg \} .$$

Стабилизатор заданного элемента $g \in G$ в присоединённом действии состоит из всех элементов группы, коммутирующих с g. Он называется *централизатором* элемента g и обозначается

$$C_g = \operatorname{Stab}_{\operatorname{Int}(G)}(g) = \{ h \in G \mid hg = gh \}.$$

11.4.1. Орбиты. Со всякой группой преобразований G множества X связано бинарное отношение $y \sim x$ на X, означающее, что y = gx для некоторого $g \in G$. Это отношение рефлексивно, ибо x = ex, симметрично, поскольку $y = gx \iff x = g^{-1}y$, и транзитивно, т. к. из равенств y = gx и z = hy вытекает равенство z = (hg)x. Таким образом, это отношение является эквивалентностью. Класс эквивалентности точки $x \in X$ состоит из всех точек, которые можно получить из x, применяя всевозможные преобразования из группы G. Он обозначается $Gx = \{gx \mid g \in G\}$ и называется орбитой x под действием G. Согласно n^* 1.4 на стр. 9 множество X распадается в дизьюнктное объединение орбит. Множество всех орбит называется фактором множества X по действию группы G и обозначается X/G. С каждой орбитой Gx связано сюрьективное отображение множеств ev_x : $G \twoheadrightarrow Gx$, $g \mapsto gx$, слой которого над точкой $y \in Gx$ состоит из всех преобразований группы G, переводящих G0 в у обозначается G1 называется G2. Слой над самой точкой G3 состоит из всех преобразований, оставляющих G3 на месте. Он называется G4 соли понятно, о какой группе G5 и дёт речь.

Упражнение 11.22. Убедитесь, что $\mathrm{Stab}_G(x)$ является подгруппой в группе G.

Если y = gx и z = hx, то для любого $s \in \operatorname{Stab}(x)$ преобразование $hsg^{-1} \in G_{zy}$. Наоборот, если fy = z, то $h^{-1}fg \in \operatorname{Stab}(x)$. Таким образом, мы имеем обратные друг другу отображения множеств:

$$\operatorname{Stab}(x) \xrightarrow{s \mapsto hsg^{-1}} G_{zy}, \qquad (11-15)$$

и стало быть, для любых трёх точек x, y, z из одной G-орбиты имеется биекция между G_{zy} и $\operatorname{Stab}(x)$.

Предложение 11.2 (формула для длины орбиты)

Длина орбиты произвольной точки x при действии на неё конечной группы преобразований G равна |Gx| = |G|: $|\operatorname{Stab}_G(x)|$. В частности, длины всех орбит и порядки стабилизаторов всех точек являются делителями порядка группы.

 $^{^1\}Pi$ ри желании его можно воспринимать как «некоммутативное»
отображения вычисления.

Доказательство. Группа G является дизъюнктным объединением множеств G_{yx} по всем $y \in Gx$ и согласно предыдущему все эти множества состоят из $|\operatorname{Stab}(x)|$ элементов.

Предложение 11.3

Стабилизаторы всех точек, лежащих в одной орбите конечной группы, сопряжены:

$$y = gx \,\Rightarrow\, \operatorname{Stab}(y) = g\operatorname{Stab}(x)\,g^{-1} = \{ghg^{-1}\mid h\in\operatorname{Stab}(x)\}\,.$$

В частности, все они имеют одинаковый порядок.

Доказательство. Это сразу следует из диаграммы (11-15).

Пример іі.і4 (действие перестановок букв на словах)

Зафиксируем какой-нибудь k-буквенный алфавит $A=\{a_1,a_2,\ldots,a_k\}$ и рассмотрим множество X всех n-буквенных слов w, которые можно написать с его помощью. Иначе X можно воспринимать как множество всех отображений $w:\{1,2,\ldots,n\}\to A$. Сопоставим каждой перестановке $\sigma\in S_n$ преобразование $w\mapsto w\sigma^{-1}$, которое переставляет буквы в словах так, как предписывает σ . Таким образом, мы получили действие симметрической группы σ 0 на множестве слов. Орбита слова σ 1 на множестве слов. Орбита слова σ 2 на множестве слов. Орбита слова σ 3 на множестве слов. Орбита слова σ 4 на множестве слов. Орбита слова σ 5 на множестве слов. Орбита слова σ 6 на множестве слов σ 8 на множестве слов σ 9 на множестве σ 9 н

$$|S_n w| = \frac{|S_n|}{|\mathrm{Stab}(w)|} = \frac{n!}{m_1! \cdot m_2! \cdot \cdots \cdot m_k!} = \binom{n}{m_1 \cdots m_k}.$$

Этот пример показывает, что разные орбиты могут иметь разную длину, и порядки стабилизаторов точек из разных орбит могут быть разными.

Упражнение 11.23. Для каждого из пяти платоновых тел рассмотрите действие группы этого тела на его гранях и по формуле для длины орбиты найдите порядок собственной и несобственной группы каждого из платоновых тел.

Пример 11.15 (классы сопряжённости в симметрической группе)

Перестановка $\mathrm{Ad}_g(\sigma)=g\sigma g^{-1}$, сопряжённая перестановке $\sigma=(\sigma_1,\sigma_2,\dots,\sigma_n)\in S_n$, для каждого $i=1,2,\dots,n$ переводит элемент g(i) в элемент $g(\sigma_i)$. Поэтому при сопряжении цикла $\tau=|i_1,i_2,\dots,i_k\rangle\in S_n$ перестановкой $g=(g_1,g_2,\dots,g_n)$ получится цикл

$$g\tau g^{-1} = \left| g_{i_1}, g_{i_2}, \dots, g_{i_k} \right\rangle.$$

Если перестановка $\sigma \in S_n$ имеет цикловой тип λ и является произведением независимых циклов, записанных по строкам диаграммы λ , то действие на такую перестановку внутреннего автоморфизма Ad_g заключается в применении отображения g к заполнению диаграммы λ , т. е. в замене каждого числа i числом g_i .

 $^{^1}$ Т. е. переводит слово $w=a_{\nu_1}a_{\nu_2}\dots a_{\nu_n}$ в слово $a_{\nu_{\sigma^{-1}(1)}}a_{\nu_{\sigma^{-1}(2)}}\dots a_{\nu_{\sigma^{-1}(n)}}$, на i-том месте которого стоит та буква, номер которой в исходном слове w переводится перестановкой σ в номер i.

Таким образом, орбиты присоединённого действия симметрической группы S_n на себе взаимно однозначно соответствуют n-клеточным диаграммам Юнга, и орбита, отвечающая диаграмме λ , состоит из всех перестановок циклового типа λ . Если диаграмма λ имеет m_i строк длины i для каждого $i=1,\,2,\,\ldots\,,n$, то централизатор любой перестановки σ циклового типа λ состоит из таких перестановок элементов заполнения диаграммы λ независимыми циклами перестановки σ , которые не меняют σ , т. е. циклически переставляют элементы вдоль строк или произвольным образом переставляют строки одинаковой длины между собой как единое целое. Тем самым, порядок стабилизатора перестановки циклового типа λ зависит только от λ и равен

$$z_{\lambda} = 1^{m_1} \cdot m_1! \cdot 2^{m_2} \cdot m_2! \cdot \cdots \cdot n^{m_n} \cdot m_n! = \prod_{\alpha=1}^n m_{\alpha}! \alpha^{m_{\alpha}}.$$

Количество перестановок циклового типа λ , т. е. длина соответствующей орбиты присоединённго действия, равна $n!/z_{\lambda}$.

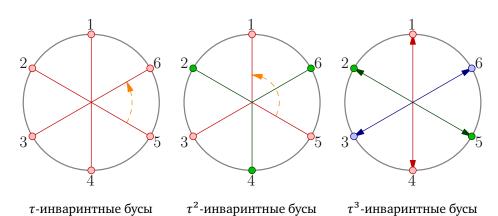
11.4.2. Перечисление орбит. Подсчёт числа элементов в факторе X/G конечного множества X по действию конечной группы G наталкивается на очевидную трудность: поскольку длины у орбит могут быть разные, число орбит «разного типа» придётся подсчитывать по отдельности, заодно уточняя по ходу дела, что именно имеется в виду под «типом орбиты». Разом преодолеть обе эти трудности позволяет

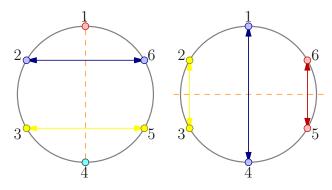
Теорема 11.2 (формула Полиа – Бернсайда)

Пусть конечная группа G действует на конечном множестве X. Для каждого $g \in G$ обозначим через $X^g = \{x \in X \mid gx = x\} = \{x \in X \mid g \in \operatorname{Stab}(x)\}$ множество неподвижных точек преобразования g. Тогда $|X/G| = |G|^{-1} \sum_{g \in G} |X^g|$.

Доказательство. Обозначим через $F \subset G \times X$ множество всех таких пар (g,x), что gx = x. Иначе F можно описать как $F = \bigsqcup_{x \in X} \operatorname{Stab}(x) = \bigsqcup_{g \in G} X^g$. Первое из этих описаний получается

из рассмотрения проекции $F \twoheadrightarrow X$, второе — из рассмотрения проекции $F \twoheadrightarrow G$. Согласно второму описанию, $|F| = \sum_{g \in G} |X^g|$. С другой стороны, из первого описания мы заключаем, что $|F| = |G| \cdot |X/G|$. В самом деле, стабилизаторы всех точек, принадлежащих одной орбите, имеют одинаковый порядок, и сумма этих порядков по всем точкам орбиты равна произведению порядка стабилизатора на длину орбиты, т. е. |G|. Складывая по всем |X/G| орбитам, получаем требуемое.





 σ_{14} -инваринтные бусы

 $\overline{\sigma}_{14}$ -инваринтные бусы

Рис. 11<12. Симметричные ожерелья из шести бусин.

Пример 11.16 (ожерелья)

Пусть имеется неограниченный запас одинаковых по форме бусин n различных цветов. Сколько различных ожерелий можно сделать из 6 бусин? Ответом на этот вопрос является количество орбит группы диэдра D_6 на множестве всех раскрасок вершин правильного шестиугольника в n цветов. Группа D_6 состоит из 12 элементов: тождественного преобразования e, двух поворотов $\tau^{\pm 1}$ на $\pm 60^\circ$, двух поворотов $\tau^{\pm 2}$ на $\pm 120^\circ$, центральной симметрии τ^3 , трёх отражений $\sigma_{14}, \sigma_{23}, \sigma_{36}$ относительно больших диагоналей и трёх отражений $\overline{\sigma}_{14}, \overline{\sigma}_{23}, \overline{\sigma}_{36}$ относительно срединных перпендикуляров к сторонам. Единица оставляет на месте все n^6 раскрасок. Раскраски, симметричные относительно остальных преобразований, показаны на рис. $11 \diamond 12$. Беря на этих рисунках все допустимые сочетания цветов, получаем, соответственно, n, n^2, n^3, n^4 и n^3 раскрасок. По теор. 11.2 искомое число 6-бусинных ожерелий равно $(n^6+3n^4+4n^3+2n^2+2n)/12$.

Упражнение 11.24. Подсчитайте количество ожерелий из 7, 8, 9, и 10 бусин.

11.5. Смежные классы и факторизация. Каждая подгруппа $H \subset G$ задаёт на группе G два отношения эквивалентности, происходящие из левого и правого регулярного действия подгруппы H на группе G. Левое действие $\lambda_h: g \mapsto hg$ приводит к эквивалентности

$$g_1 \underset{L}{\sim} g_2 \iff g_1 = hg_2$$
 для некоторого $h \in H$, (11-16)

разбивающей группу G в дизъюнктное объединение орбит вида $Hg \stackrel{\text{def}}{=} \{hg \mid h \in H\}$, называемых *правыми смежными классами* (или *правыми сдвигами*) подгруппы H в группе G. Множество правых смежных классов обозначается $H \setminus G$.

Упражнение 11.25. Покажите, что равенство $Hg_1 = Hg_2$ равносильно любому из эквивалентных друг другу включений $g_1^{-1}g_2 \in H$, $g_2^{-1}g_1 \in H$.

С правым действием ϱ_h : $g\mapsto gh^{-1}$ связано отношение эквивалентности

$$g_1 \underset{R}{\sim} g_2 \iff g_1 = g_2 h$$
 для некоторого $h \in H$, (11-17)

разбивающее группу G в дизъюнктное объединение орбит $gH \stackrel{\text{def}}{=} \{gh \mid h \in H\}$, которые называются левыми смежными классами (или левыми сдвигами) подгруппы H в группе G. Множество левых смежных классов обозначается G/H.

Поскольку и левое и правое действия подгруппы H на группе G свободны, все орбиты каждого из них состоят из |H| элементов. Тем самым, число орбит в обоих действиях одинаково и равно |G|/|H|. Это число называется *индексом* подгруппы H в группе G и обозначается $[G:H] \stackrel{\mathrm{def}}{=} [G/H]$. Нами установлена

Теорема и. 3 (теорема Лагранжа об индексе подгруппы)

Порядок и индекс любой подгруппы H в произвольной конечной группе G нацело делят порядок G и [G:H]=|G|:|H|.

Следствие 11.3

Порядок любого элемента конечной группы нацело делит порядок группы.

Доказательство. Порядок элемента $g \in G$ равен порядку порождённой им циклической подгруппы $\langle g \rangle \subset G$.

11.5.1. Нормальные погруппы. Подгруппа $H \subset G$ называется нормальной (или инвариантной), если для любого $g \in G$ выполняется равенство $gHg^{-1} = H$ или, что то же самое, gH = Hg. Иначе можно сказать, что подгруппа $H \subset G$ нормальна тогда и только тогда, когда левая и правая эквивалентности (11-16) и (11-17) совпадают друг с другом и, в частности, $H \setminus G = G/H$. Если подгуппа $H \subset G$ нормальна, мы пишем $H \lhd G$.

Пример 11.17 (ядра гомоморфизмов)

Ядро любого гомоморфизма групп $\varphi: G_1 \to G_2$ является нормальной подгруппой в G_1 , поскольку при $\varphi(h) = e$ для любого $g \in G$ имеем равенство $\varphi(ghg^{-1}) = \varphi(g)\varphi(h)\varphi(g)^{-1} = = \varphi(g)\varphi(g)^{-1} = e$, означающее, что $g(\ker \varphi) g^{-1} \subset \ker \varphi$.

Упражнение 11.26. Покажите, что если для любого $g \in G$ есть включение $gHg^{-1} \subset H$, то все эти включения — равенства.

Отметим, что совпадение правых и левых смежных классов ядра g ($\ker \varphi$) = ($\ker \varphi$) g уже было установлено нами ранее в предл. 11.1.

Пример II.18 ($V_4 \lhd S_4$)

Подгруппа Клейна $V_4 \subset S_4$ состоящая из перестановок циклового типа $\begin{tabular}{c} \begin{tabular}{c} \begin{tabular}{$

Пример 11.19 (внутренние автоморфизмы)

Подгруппа внутренних автоморфизмов ${\rm Int}(G)={\rm Ad}(G)$ нормальна в группе ${\rm Aut}(G)$ всех автоморфизмов группы G, поскольку сопрягая внутренний автоморфизм ${\rm Ad}_g:h\mapsto ghg^{-1}$ произвольным автоморфизмом $\varphi:G\cong G$, мы получаем внутренний автоморфизм

$$\varphi \circ \operatorname{Ad}_g \circ \varphi^{-1} = \operatorname{Ad}_{\varphi(g)} \; .$$

Упражнение 11.27. Убедитесь в этом.

Пример 11.20 (параллельные переносы)

Подгруппа параллельных переносов нормальна в группе $\mathrm{Aff}(\mathbb{A}^n)$ всех биективных аффинных преобразований аффинного пространства \mathbb{A}^n , т. к. сопрягая параллельный перенос τ_n на век-

тор v любым аффинным преобразованием $\varphi: \mathbb{A}^n \to \mathbb{A}^n$, получаем перенос $\tau_{D_{\varphi}(v)}$ на вектор $D_{\varpi}(v)$.

Упражнение 11.28. Убедитесь в этом.

Пример іі.21 (нормализатор и централизатор, ср. с упр. іі.19 на стр. 160)

Пусть группа G действует на множестве X и $M \subset X$ — произвольное подмножество. Напомню 2 , что подгруппы

$$N(M) \stackrel{\text{def}}{=} \{ g \in G \mid \forall x \in M \ gx \in M \}$$
$$Z(M) \stackrel{\text{def}}{=} \{ g \in G \mid \forall x \in M \ gx = x \}$$

называются соответственно *нормализатором* и *централизатором* подмножества M. Поскольку для любых $g \in N(M)$, $h \in Z(M)$ и $x \in M$ выполняется равенство $ghg^{-1}x = gg^{-1}x = x$, ибо $h(g^{-1}x) = g^{-1}x$, так как $g^{-1}x \in M$, централизатор является нормальной подгруппой в нормализаторе.

11.5.2. Фактор группы. Попытка определить умножение на множестве левых смежных классов G/H неабелевой группы G формулой

$$(g_1 H) \cdot (g_2 H) \stackrel{\text{def}}{=} (g_1 g_2) H, \qquad (11-18)$$

вообще говоря, некорректна: различные записи $g_1H=f_1H$ и $g_2H=f_2H$ одних и тех же классов могут приводить к различным классам $(g_1g_2)H \neq (f_1f_2)H$.

Упражнение 11.29. Убедитесь, что для группы $G=S_3$ и подгруппы второго порядка $H\subset G$, порождённой транспозицией σ_{12} , формула (11-18) некорректна.

Предложение 11.4

Для того, чтобы правило $g_1H\cdot g_2H=(g_1g_2)H$ корректно определяло на G/H структуру группы, необходимо и достаточно, чтобы подгруппа H была нормальна в G.

Доказательство. Если формула (11-18) корректна, то она задаёт на множестве смежных левых классов G/H групповую структуру: ассоциативность композиции наследуется из 3G , единицей служит класс eH=H, обратным к классу gH — класс $g^{-1}H$. Факторизация $G \twoheadrightarrow G/H$, $g \mapsto gH$, является гомоморфизмом групп с ядром H. Поэтому подгруппа H нормальна в силу прим. 11.17. Наоборот, пусть H нормальна и пусть $f_1H=g_1H$ и $f_2H=g_2H$. Мы должны убедиться, что $(f_1f_2)H=(g_1g_2)H$. Так как левый смежный класс $f_2H=g_2H$ совпадает с правым классом Hg_2 , каждый элемент вида f_1f_2h можно переписать как $f_1h_1g_2$ с подходящими $h_1\in H$. Аналогично, $f_1h_1=h_2g_1$ для подходящего $h_2\in H$ в виду равенств $f_1H=g_1H=Hg_1$. Наконец из равенства $H(g_1g_2)=(g_1g_2)H$ мы заключаем, что $f_1f_2h=h_2g_1g_2=g_1g_2h_3$ для некоторого $h_3\in H$, откуда $(f_1f_2)H\subset (g_1g_2)H$. Противоположное включение доказывается аналогично.

²См. n° 11.4 на стр. 159.

 $^{{}^{3}(}g_{1}H \cdot g_{2}H) \cdot g_{3}H = (g_{1}g_{2})H \cdot g_{3}H = ((g_{1}g_{2})g_{3})H = (g_{1}(g_{2}g_{3}))H = g_{1}H \cdot (g_{2}g_{3})H = g_{1}H \cdot (g_{2}H \cdot g_{3}H).$

Определение 11.2

Множество смежных классов G/H нормальной подгруппы $H \lhd G$ с операцией

$$g_1 H \cdot g_2 H \stackrel{\text{def}}{=} (g_1 g_2) H$$

называется фактором (или фактор группой) группы G по нормальной подгруппе H. Гомоморфизм групп $G \to G/H$, $g \mapsto gH$, называется гомоморфизмом факторизации.

Следствие 11.4

Каждый гомоморфизм групп $\varphi:G_1\to G_2$ является композицией эпиморфизма факторизации $G_1\twoheadrightarrow G_1$ /ker φ и мономорфизма G_1 /ker $\varphi\hookrightarrow G_2$, переводящего смежный класс $g\ker\varphi\in G_1$ /ker φ в элемент $\varphi(g)\in G_2$. В частности, im $\varphi\simeq G$ /ker φ .

Доказательство. Следствие утверждает, что слой $\varphi^{-1}(\varphi(g))$ гомоморфизма φ над каждой точкой $\varphi(g) \in \operatorname{im} \varphi \subset G_2$ является левым сдвигом ядра $\ker \varphi$ на элемент g, что мы уже видели в предл. 11.1 на стр. 155.

Предложение 11.5

Если подгруппа $H \subset G$ нормализует 1 подгруппу $N \subset G$, то множества $HN = \{hn \mid h \in H, n \in N\}$ и $NH = \{nh \mid n \in N, h \in H\}$ совпадают друг с другом и являются подгруппой в G, причём $N \lhd HN, H \cap N \lhd H$ и $HN/N \simeq H/(H \cap N)$.

Доказательство. NH = HN ибо $nh = h(h^{-1}nh) \in HN$ и $hn = (hnh^{-1})h \in NH$ для всех $n \in N$, $h \in H$. Это подгруппа, так как $(nh)^{-1} = h^{-1}n^{-1} \in HN = NH$ и

$$(n_1h_1)(n_2h_2) = n_1(h_1n_2)h_2 = n_1(n_3h_3)h_2 = (n_1n_3)(h_3h_2) \in \mathit{NH}$$

(существование таких $n_3 \in N$ и $h_3 \in H$, что $h_1n_2 = n_3h_3$, вытекает из равенства HN = NH). Подгруппы $H \cap N \lhd H$ и $N \lhd HN$ нормальны, так как по условию $hNh^{-1} \subset N$ для всех $h \in H$. Отображение $\varphi \colon HN \to H/(H \cap N)$, переводящее произведение hn в смежный класс $h \cdot (H \cap N)$, определено корректно, поскольку при $h_1n_1 = h_2n_2$ элемент $h_1^{-1}h_2 = n_1n_2^{-1} \in H \cap N$, откуда $h_1 \cdot (H \cap N) = h_1 \cdot (h_1^{-1}h_2) \cdot (H \cap N) = h_2 \cdot (H \cap N)$. Оно сюрьективно и является гомоморфизмом, поскольку $\varphi(h_1n_1h_2n_2) = \varphi(h_1h_2(h_2^{-1}n_1h_2)n_2) = h_1h_2 \cdot (H \cap N)$. Так как $\ker \varphi = eN = N$, по сл. 11.4 имеем $H/(H \cap N) = \operatorname{im} \varphi \simeq HN/\ker \varphi = HN/N$.

Упражнение 11.30. Пусть $\varphi:G_1 \twoheadrightarrow G_2$ — сюрьективный гомоморфизм групп. Покажите, что полный прообраз $N_1=\varphi^{-1}(N_2)$ любой нормальной подгруппы $N_2 \lhd G_2$ является нормальной подгруппой в G_1 и $G_1/N_1 \simeq G_2/N_2$.

11.5.3. Геометрический смысл нормальности. Согласно предл. 11.4 и прим. 11.17 нормальность подгруппы $H \subset G$ равносильна наличию гомоморфизма $\varphi : G \to G'$ с ядром $H = \ker \varphi$. Если группа G' представлена как группа преобразований какого-либо множества X, то возникает такое действие $G \to \operatorname{Aut} X$ исходной группы G на G на G на G на некоем образом, нормальность подгруппы G оставляющих на месте каждую точку G . Таким образом, нормальность подгруппы G означает наличие действия группы G на некоем множестве G с ядром G . Например, четвертная подгруппа Клейна G является ядром действия собственной группы куба на трёх отрезках, соединяющих центры противоположных граней.

 $^{^{1}}$ Т. е. $hNh^{-1}=N$ для всех $h\in H$.

²Как мы видели в прим. 11.12, такое представление всегда возможно.

Ответы и указания к некоторым упражнениям

Упр. іі.і. Если fg = e и gh = e, то f = fe = f(gh) = (fg)h = eh = h.

Упр. 11.2. Для двух единичных элементов e' и e'' выполнены равенства e'=e'e''=e''.

Упр. 11.4. Ответ: либо r=1 и $\mathrm{Tors}(G)=0$ (т. е. $G\simeq\mathbb{Z}$), либо r=0 (т. е. G конечна) и каждое простое число $p\in\mathbb{N}$ присутствует в каноническом разложении

$$G = \frac{\mathbb{Z}}{\left(p_1^{n_1}\right)} \oplus \cdots \oplus \frac{\mathbb{Z}}{\left(p_{\alpha}^{n_{\alpha}}\right)}$$

не более одного раза. Доказательство аналогично доказательству предл. 10.3 на стр. 138.

Упр. 11.5. Пусть $k=dr, m=\operatorname{ord}(\tau)=ds$, где $\operatorname{hod}(r,s)=1$. Если d>1, то τ^d является произведением d независимых циклов длины s, и $\tau^k=\left(\tau^d\right)^r$ будет произведением s-тых степеней этих циклов. Остаётся показать, что когда $\operatorname{ord}(\tau)=m$ взаимно прост $\operatorname{c} k$, то τ^k тоже цикл длины m. Если для какого-то элемента a цикла τ выполняется равенство $\left(\tau^k\right)^r(a)=a$, то kr делится на m, что при $\operatorname{hod}(k,m)=1$ возможно только когда r делится на m. Поэтому $r\geqslant m$, т. е. длина содержащего a цикла перестановки τ^k не меньше m.

Упр. 11.6. Ответ: $n(n-1)\cdots(n-k+1)/k$ (в числителе дроби k сомножителей).

Упр. 11.7. Непересекающиеся циклы очевидно коммутируют. Если коммутирующие циклы τ_1 и τ_2 пересекаются по элементу a, то $\tau_1(a)$ является элементом цикла τ_2 , поскольку в противном случае $\tau_2\tau_1(a)=\tau_1(a)$, а $\tau_1\tau_2(a)\neq\tau_1(a)$, так как $\tau_2(a)\neq a$. По той же причине $\tau_2(a)$ является элементом цикла τ_1 , и значит, оба цикла состоят из одних и тех же элементов. Пусть $\tau_1(a)=\tau_2^s(a)$. Любой элемент b, на который оба цикла реально действуют имеет вид $b=\tau_2^r(a)$, и цикл τ_1 действует на него как τ_2^s :

$$\tau_1(b) = \tau_1 \tau_2^r(a) = \tau_2^r \tau_1(a) = \tau_2^r \tau_2^s(a) = \tau_2^s \tau_2^r(a) = \tau_2^s(b).$$

Второе утверждение следует из упр. 11.5.

Упр. 11.8. Ответ: $n!/\prod_{i=1}^n i^{m_i} m_i!$ (ср. с форм. (1-12) на стр. 9). Решение: сопоставим каждому заполнению диаграммы циклов λ неповторяющимися числами от 1 до n произведение независимых циклов, циклически переставляющих элементы каждой строки слева направо; получаем сюрьективное отображение множества заполнений на множество всех перестановок циклового типа λ ; прообраз каждой перестановки состоит из $\prod_{i=1}^n i^{m_i} m_i!$ заполнений, получающихся друг из друга независимыми циклическими перестановками элементов в каждой строке и произвольными перестановками строк одинаковой длины между собою как единого целого.

Упр. 11.9.
$$|1,6,3,4\rangle^{15} \cdot |2,5,8\rangle^{15} \cdot |7,9\rangle^{15} = |1,6,3,4\rangle^{-1} \cdot |7,9\rangle = (4, 2, 6, 3, 5, 1, 9, 8, 7)$$

Упр. II.14. Ответ:
$$|1,2,3,4\rangle = \sigma_{12}\sigma_{23}\sigma_{34}, |1,2,4,3\rangle = \sigma_{12}\sigma_{24}\sigma_{34}, |1,3,2,4\rangle = \sigma_{13}\sigma_{23}\sigma_{24}, |1,3,4,2\rangle = \sigma_{13}\sigma_{34}\sigma_{24}, |1,4,2,3\rangle = \sigma_{24}\sigma_{23}\sigma_{13}, |1,4,3,2\rangle = \sigma_{34}\sigma_{23}\sigma_{12}.$$

Упр. 11.15. Подсчёт для группы куба дословно тот же, что и для группы додекаэдра. Группы октаэдра и икосаэдра изоморфны группам куба и додекадра с вершинами в центрах граней октаэдра и икосаэдра соответственно.

Упр. 11.17. Зафиксируем в V какой-либо базис и сопоставим оператору $F \in GL(V)$ базис, состоящий из векторов $f_i = F(e_i)$. Для выбора первого базисного вектора f_1 имеется $|V| - 1 = q^n - 1$

- возможностей, для выбора второго $|V|-|\mathbb{k}\cdot f_1|=q^n-q$ возможностей, для выбора третьего $|V|-|\mathbb{k}\cdot f_1\oplus\mathbb{k}\cdot f_2|=q^n-q^2$ возможностейи т. д.
- Упр. 11.18. Подсказка: центральная симметрия коммутирует со всеми элементами полной группы додекаэдра; покажите, что единственная перестановка в S_5 , коммутирующая со всеми перестановками из S_5 это тождественное преобразование.
- Упр. 11.23. Проиллюстрируем рассуждение на примере икосаэдра. И собственная и полная группы транзитивно действуют на 20 его треугольных гранях. Стабилизатор грани в собственной и полной группах представляет собой собственную и полную группу треугольника на плоскости, состоящую, соответственно из 3 и из 6 преобразований. По формуле для длины орбиты получаем $|SO_{uko}| = 20 \cdot 3 = 60$ и $|O_{uko}| = 20 \cdot 6 = 120$.
- Упр. 11.25. Равенство $h_1g_1=h_2g_2$ влечёт равенства $g_2g_1^{-1}=h_2^{-1}h_1\in H$ и $g_1g_2^{-1}=h_1^{-1}h_2\in H$. С другой стороны, если один из обратных друг другу элементов $g_1^{-1}g_2$ и $g_2^{-1}g_1$ лежит в H, то в H лежит и второй, и $Hg_1=H(g_2g_1^{-1})g_2=Hg_2$.
- Упр. 11.26. Включение $gHg^{-1} \subset H$ влечёт включение $H \subset g^{-1}Hg$. Если это так для всех $g \in G$, то заменяя g на g^{-1} мы получаем обратное к исходному включение $gHg^{-1} \supset H$.
- $\forall \text{TIP. II.27. } \varphi \circ \operatorname{Ad}_{g} \circ \varphi^{-1} : h \mapsto \varphi \left(g \varphi^{-1}(h) g^{-1} \right) = \varphi(g) h \varphi(g)^{-1}.$
- Упр. 11.28. Для любой точки $x \in \mathbb{R}^n$ положим $p = \varphi^{-1}(x)$. Так как $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ аффинно, $\varphi(p+v) = x + D_{\varphi}(v)$. Поэтому $\varphi \circ \tau_v \circ \varphi^{-1} : x \mapsto \varphi(p+v) = x + D_{\varphi}(v)$.
- Упр. 11.30. Если $\varphi(x) \in N_2$, то $\varphi(gxg^{-1}) = \varphi(g)\varphi(x)\varphi(g)^{-1} \in N_2$ в силу нормальности $N_2 \lhd G_2$. Поэтому $N_1 = \varphi^{-1}(N_2) \lhd G_1$. Композиция сюрьективных гомоморфизмов $G_1 \twoheadrightarrow G_2 \twoheadrightarrow G_2/N_2$ является сюрьективным гомоморфизмом с ядром N_1 .